
MAY 2009

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 One man’s spam

3 NEWS

 Russian state award for Kaspersky

 Trend makes new acquisition

 The early bird

 Archive material

3 VIRUS PREVALENCE TABLE

4 TECHNICAL FEATURE

 Anti-unpacker tricks – part six

10 FEATURE

 Case study: the TDSS rootkit

15 PRODUCT REVIEW

 Comodo Internet Security

19 END NOTES & NEWS

GOING MODULAR
The TDSS modular downloader is known for
its ability to bypass active protection, for its
outstanding persistence and its rootkit functions.
Alisa Shevchenko presents a detailed case study.
page 10

DRAGON’S DEN
Comodo’s Internet Security suite leaves an overall
favourable impression on the VB test team after its
fi rst outing on the test bench.
page 15

THE RESULTS ARE IN!
After months of
consideration, internal
and external discussion,
trials and retrials, the
results of VB’s fi rst
‘live’ anti-spam comparative review and certifi cation
are in. Martijn Grooten has all the details.
page S5

This month: anti-spam news and events; John Levine
discusses the ways in which a DKIM-authenticated
domain fi ts into a mail-handling system; and
Martijn Grooten reveals the results of VB’s fi rst
‘live’ anti-spam comparative review.

2 MAY 2009

COMMENT

Editor: Helen Martin

Technical Consultant: John Hawes

Technical Editor: Morton Swimmer

Consulting Editors:

Nick FitzGerald, Independent consultant, NZ

Ian Whalley, IBM Research, USA

Richard Ford, Florida Institute of Technology, USA

ONE MAN’S SPAM
Since the advent of VB’s anti-spam testing (see p.S5),
each of the VB staff members has been tasked with
classifying their own incoming mail on a daily basis. This
may sound tedious, but I have found that it is not such an
onerous task when performed at the start of the day while
sipping one’s morning coffee and gradually coming to.

It is also a task that concentrates the mind – I fi nd
myself taking more time to consider the subject and/or
content of many of the messages. While picking out the
‘defi nite’ ham from the list displayed in the easy-to-view
web interface is extremely easy (by recognizing emails
received in one’s inbox the previous day), and picking
out the ‘defi nite’ spam is a no-brainer (e.g. messages
in foreign characters, offers from online pharmacies,
notifi cations of lottery wins or suggestions one adds an
academic qualifi cation to one’s CV), other messages
present more of a philosophical challenge.

First, there are the messages that are unwanted ham. For
me, these include messages from online retailers from
which I have previously made purchases – Amazon is a
prime example, as are the various companies from which
Virus Bulletin has purchased marketing materials or offi ce
equipment. I am generally happy for these companies
to send me information about their latest offers, but
nine times out of ten the delete button is applied to the
message before it has even been opened. The same is
true for numerous newsletters that I have signed up
for, as well as alerts from social networking sites. All
of these messages go straight into my ‘deleted items’

folder without even a glance at their content, yet when
classifying them I am forced to admit that they are ham. I
wonder whether this is an entirely fair classifi cation.

Next, there is the curious phenomenon of spam that is of
interest. I hesitate to admit to this, but occasionally there
appear messages in my inbox that I know should not be
there, but which pique my interest. One recent example
was a message from a UK charity promoting a challenge
that involves climbing the three highest mountains in
the UK within 24 hours. This is not what I would call
a classic example of spam, yet I have not signed up
to receive messages from the charity in question, nor
passed them my email address in any other way. Having
absorbed the full details of the message (and decided
my levels of fi tness are not yet up to the challenge) I
reluctantly marked it as spam.

The most troublesome category of messages – that
requires the most thought – are those that occupy the
awkward grey area between ham and spam. While we
have available an ‘unclassifi ed’ category for messages
for which we really are unable to make a decision (for
example, for messages sent to a predecessor’s email
address where we cannot be sure whether or not they
signed up to receive them), the use of this category as an
easy way out of a tough decision is discouraged.

Being in the publishing business, I fi nd myself at the
receiving end of many press releases. PR agencies have
found my email address through a variety of sources
and send along information which they think will be
of interest to me/my publication. Sometimes they get
it right, and I receive the latest product news from
the players in the IT security industry – these are not
messages I have asked for or subscribed to, yet they are
certainly of interest. However, others misinterpret the
name ‘Virus Bulletin’ and send me releases on the latest
advances in immunology or invite me to biomedical
seminars, and yet others let me know about topics as
diverse as the launch of a new website for a company
that supplies alloy wheels, to the publication of a new
book ‘for the hard nosed business person to do good
in the world AND make a profi t’. Beyond the general
amusement of reading such announcements I am not
interested in them and as such would classify them as
spam – but what really makes them any different from
those press releases that happen to fall into my subject
area of interest? One editor’s spam is another’s ham.

Finally, I have learned that even spam can bring a smile
to an otherwise dreary Monday morning: a recent
message arrived in my inbox with the subject line ‘We
are too lazy to change subjects every daay, please buy
our products’ [sic]. Now that’s honesty!

‘The most troublesome
messages are those
that occupy the
awkward grey area
between ham and
spam.’
Helen Martin, Virus Bulletin

3MAY 2009

VIRUS BULLETIN www.virusbtn.com

NEWS
RUSSIAN STATE AWARD FOR KASPERSKY
VB extends warm wishes and congratulations to Eugene
Kaspersky on being awarded the State Prize of the Russian
Federation for Science and Technology.

The prize – the highest Russian award conferred on
individuals for services to society and the state – is awarded
annually by the President of the Russian Federation to
Russian citizens who have demonstrated outstanding work,
discoveries and achievements that are deemed to enrich both
Russian and global science and that have made signifi cant
contributions to the advancement of science and technology.

The CEO and co-founder of Kaspersky Lab will be
presented with the award by President Dmitry Medvedev at
the Kremlin in June.

TREND MAKES NEW ACQUISITION
Demonstrating that businesses can continue to develop and
build on their assets in tougher economic climates, Trend
Micro has announced its acquisition of Canadian security
and compliance fi rm Third Brigade. Trend CEO Eva Chen
claimed that the acquisition would help accelerate ongoing
efforts within the company to provide innovative solutions
designed specifi cally for dynamic datacentres. The terms of
the agreement have not been disclosed, but the acquisition is
expected to be completed in June.

THE EARLY BIRD
Online registration is now open for the VB2009 conference
in Geneva this September. Delegates who register before
15 June 2009 will benefi t from early bird discounts on the
subscriber and non-subscriber rates. VB2009 takes place
23–25 September 2009. The full programme, including
abstracts for each paper, can be viewed at
http://www.virusbtn.com/conference/vb2009/.

ARCHIVE MATERIAL
Anti-malware products suffered a plague of archive
processing vulnerabilities last month, with products from
six companies found to be affected. Products from Avira,
Aladdin, Comodo, ESET, Trend Micro and McAfee all
experienced problems processing archives (which could have
led to the scanners failing to detect malicious fi les contained
within an archive). According to The H Security, both Avira
and ESET have released an update which has resolved the
problem for CAB fi les; Comodo has released an update to
fi x the bug when processing RAR archives; and McAfee has
released a fi x for the problem with RAR and ZIP archives.
Updates are expected soon from Aladdin and Trend Micro.

Prevalence Table – March 2009

Malware Type %

NetSky Worm 15.65%

Autorun Worm 12.67%

Mytob Worm 10.37%

Inject Trojan 10.24%

Virut Virus 9.31%

Agent Trojan 9.12%

Buzus Trojan 3.84%

Mydoom Worm 3.80%

Iframe Exploit 3.02%

Basine Trojan 2.11%

Downloader-misc Trojan 2.05%

Delf Trojan 1.97%

Zafi Worm 1.78%

Backdoor-misc Trojan 1.68%

Bagle Worm 1.64%

Invoice Trojan 1.31%

Banload Trojan 1.17%

Suspect packers Misc 0.83%

Zlob/Tibs Trojan 0.55%

Sality Virus 0.53%

Murlo Trojan 0.51%

Small Trojan 0.46%

Tenga Worm 0.41%

Parite Worm 0.41%

LDPinch Trojan 0.39%

OnlineGames Trojan 0.31%

Brontok/Rontokbro Worm 0.31%

Fuzen Rootkit 0.28%

Cutwail/Pandex/Pushdo Trojan 0.28%

Alman Worm 0.26%

Mabutu Worm 0.26%

Bifrose/Pakes Trojan 0.25%

VB Worm 0.24%

Others[1] 2.94%

Total 100.00%

[1]Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/conference/vb2009
http://www.virusbtn.com/Prevalence

VIRUS BULLETIN www.virusbtn.com

4 MAY 2009

ANTI-UNPACKER TRICKS
– PART SIX
Peter Ferrie
Microsoft, USA

New anti-unpacking tricks continue to be developed as
the older ones are constantly being defeated. This series
of articles (see also [1–5]) describes some tricks that
might become common in the future, along with some
countermeasures.

This article concentrates on anti-debugging tricks that target
plug-ins for the OllyDbg debugger. All of the techniques
described here were discovered and developed by the author.

OllyDbg plug-ins
OllyDbg is perhaps the most popular user-mode debugger.
A number of packers have been written that are able to
detect OllyDbg, so plug-ins have been created to attempt to
hide it from those packers.

Last month we looked at antiAnti, HideDebugger, HideOD,
IsDebugPresent, Olly Advanced and OllyICE. In this
article we look at some more OllyDbg plug-ins and the
vulnerabilities that could be used to detect them.

Olly Invisible

Olly Invisible hooks the code in OllyDbg that is reached
when it is formatting the kernel32 OutputDebugStringA()
string, and then attempts to replace all ‘%’ characters with
‘ ’ in the message. However, a bug in the routine causes it to
miss the last character in the string.

The plug-in hooks the debuggee’s kernel32
OutputDebugStringA() function by replacing the fi rst six
bytes with an indirect jump to a dynamically allocated block
of memory. This block attempts to replace all ‘%’ characters
with ‘_’ in the message.

Similarly, Olly Invisible hooks the debuggee’s kernel32
OutputDebugStringW() function by replacing the fi rst six
bytes with an indirect jump to a dynamically allocated block
of memory. This block attempts to replace all ‘%’ characters
with ‘_’ in the message.

The plug-in hooks the debuggee’s kernel32
IsDebuggerPresent() function in the same way – by
replacing the fi rst six bytes of the function with an indirect
jump to a dynamically allocated block of memory. In this
case the block always returns zero, regardless of the value in
the PEB->BeingDebugged fl ag.

Olly Invisible hooks the debuggee’s ntdll
NtQueryInformationProcess() function in the same way
again, replacing the fi rst six bytes of the function with an

indirect jump to a dynamically allocated block of memory.
This block calls the original ntdll
NtQueryInformationProcess() function, and then checks
whether an error occurred. If no error occurred, then the
block checks if the ProcessInformationClass is the
ProcessDebugPort class, and that the ProcessInformation
parameter is non-zero, and then checks that four bytes are
writable at the specifi ed memory address. If all of these
requirements are met, Olly Invisible writes a zero to the
memory address at which the ProcessInformation parameter
points. This method is almost unfl awed, but it omits a
check of whether the current process is specifi ed.
However, the current process can be specifi ed in ways
other than the pseudo-handle that is returned by the
kernel32 GetCurrentProcess() function, and that must be
taken into account.

If possible, Olly Invisible patches the debuggee’s ntdll
CsrGetProcessId() function, so that it always returns zero.
However, since this function should never return zero, such
a result is a sure sign that the plug-in is present.

Olly Invisible hooks the debuggee’s ntdll
NtQuerySystemInformation() function by replacing the fi rst
six bytes with an indirect jump to a dynamically allocated
block of memory. This block calls the original ntdll
NtQuerySystemInformation() function, and then checks
if an error occurred. If no error occurred, it checks if the
SystemInformationClass is the SystemProcessInformation
class. If it is, then the block searches within the returned
process list for processes with the image name
‘OllyDbg.exe’. If any are found, then the block adjusts
the list so that it skips those entries. However, the
entries themselves are untouched, and can be found by a
brute-force search of the returned buffer.

Olly Invisible hooks the debuggee’s ntdll
NtReadVirtualMemory() function by replacing the fi rst six
bytes of the function with an indirect jump to a dynamically
allocated block of memory. This block calls the original
ntdll NtReadVirtualMemory() function, and then checks if
an error occurred. If no error occurred, it checks if the read
includes the address of a hooked function. If it does, then
the block restores the original bytes of the function in the
returned buffer, thus achieving in-memory stealth for remote
processes. However, there are three problems in the code.

The fi rst problem is in the bounds check: Olly Invisible only
checks if the read includes the address of the fi rst byte of a
hooked function. This means that if the read begins one byte
after the start of the hooked function, then the hook will be
visible. The second problem is that Olly Invisible does not
check how many bytes have been read, but always attempts
to restore the six altered bytes. Thus, even if only one byte
was read, six bytes will be written to the buffer. If the buffer

TECHNICAL FEATURE

VIRUS BULLETIN www.virusbtn.com

5MAY 2009

is at the end of a page or in a sensitive location, then an
exception or memory corruption could occur as a result. The
third problem is that Olly Invisible does not check the process
handle for which the request was made, which can lead to the
‘stealthing’ of the memory of a completely different process.
The correct behaviour would be to restore the bytes only if
the current process is specifi ed. However, the current process
can be specifi ed in ways other than the pseudo-handle that is
returned by the kernel32 GetCurrentProcess() function, and
that must be taken into account.

Olly Invisible sets the debuggee’s PEB->BeingDebugged
fl ag to zero.

The author of Olly Invisible has not responded to the report.

PhantOm

The PhantOm plug-in changes the ‘OllyDbg - <fi lename>
- [CPU]’ string in OllyDbg to ‘PhantOm - [CPU]’.

It changes the ‘CPU -’ string either to the one specifi ed in
the phantom.ini fi le, or to ‘o_O’ if no string is specifi ed. It
changes the ‘%smodule’ string to ‘%sm0dule’, and changes
the ‘NULL thread’ string to ‘NULL thr3ad’.

PhantOm changes the export address for the debuggee’s
ntdll NtQueryInformationProcess() function so that it points
into the fi le header of ntdll.dll. It also changes the
corresponding import address in the debuggee’s
kernel32.dll to point into the fi le header of ntdll.dll. It
copies the original ntdll NtQueryInformationProcess()
function code into the fi le header of ntdll.dll, and then
appends some code to the copied function. The appended
code checks the ProcessInformationClass parameter. If the
ProcessTimes class is specifi ed, then the hook returns an
error. The purpose of the change to kernel32.dll is to hook
the kernel32 GetProcessTimes() function implicitly. The
ProcessTimes class can be used to expose the length of time
that a user requires to debug an application, so by hiding
this information, it hides OllyDbg too.

PhantOm aims to patch the debuggee’s user32 BlockInput()
function code to always return successfully, but this code
does not work in Windows 2000 and earlier because of an
apparently reversed conditional statement.

PhantOm erases the dwX, dwY, dwXSize, dwYSize,
dwXCountChars, dwYCountChars and dwFillAttribute
fi elds from the RTL_USER_PROCESS_PARAMETERS
block. These characteristics are checked by the ChupaChu
debugger test, which also checks whether bit 7 is set in
the dwFlags fi eld. However, due to a bug, the latter check
always fails. If it were not for the bug, the ChupaChu test
would detect the plug-in.

PhantOm attempts to hook the debuggee’s ntdll
KiUserExceptionDispatcher() function by replacing an

0xE8 opcode (‘CALL’ instruction) with an 0xE9 opcode
(‘JMP’ instruction) at a fi xed location within the routine.
This behaviour is a bug, because in Windows Vista the
routine has an additional instruction prepended to it,
meaning that the required instruction is in a different
location. However, if the hook is successful, then when
an exception occurs, the hook saves the state of the debug
registers into a private memory region. The hook then swaps
in the previous debug register values before passing the
exception to the debuggee. This tricks the debuggee into
thinking that any changes it makes are current. PhantOm
also attempts to hook the ntdll NtContinue() function in
order to save the updated debug register values on return
from the debuggee. However, a bug exists in the hooking
code. The hook checks for the correct instruction before
replacing it, but due to an incorrect conditional assignment,
it performs the replacement regardless of the result.

PhantOm hooks the debuggee’s kernel32 GetTickCount()
function by replacing the fi rst fi ve bytes of the function
with a relative jump to a dynamically allocated block of
memory. This block intercepts attempts to call the kernel32
GetTickCount() function, and then returns a tick count that
is incremented by one each time it is called, regardless of
how much time has passed.

PhantOm patches __fuistq() in OllyDbg to avoid the
fl oating-point operations error. It does this by skipping
the data conversion. This is not the proper way to avoid
the problem, however, since no values are converted as a
result. A better fi x would be to change the fl oating-point
exception mask to ignore such errors. This can be achieved
by changing the dword at fi le offset 0xCB338 from 0x1332
to 0x1333, or just by loading that value manually into the
control word of the FPU.

PhantOm patches the code in OllyDbg that is reached
when it is formatting the kernel32 OutputDebugStringA()
string. The patch prevents the debugger from formatting the
message.

PhantOm hooks the code in OllyDbg that is reached when a
debug event occurs. When the hook is reached, it checks for
the following events:

• If the DBG_PRINTEXCEPTION_C (0x40010006)
exception is seen, then the hook returns a status that the
exception was not handled. This hides OllyDbg from
the kernel32 GetLastError() detection method.

• If the EXCEPTION_ACCESS_VIOLATION
(0xC0000005) or EXCEPTION_GUARD_PAGE
(0x80000001) exception is seen and is not within the
bounds of a memory breakpoint, then the hook returns
a status that the event was not handled. This hides
OllyDbg from the guard page detection method.

VIRUS BULLETIN www.virusbtn.com

6 MAY 2009

• If the EXCEPTION_ ILLEGAL_INSTRUCTION
(0xC000001D), EXCEPTION_INVALID_LOCK_
SEQUENCE (0xC000001E) or EXCEPTION_
INTEGER_DIVIDE_BY_ZERO (0xC00000094)
exception is seen, then PhantOm returns a status that
the event was not handled. This prevents OllyDbg from
breaking on several common conditions.

PhantOm installs a driver which hooks the
NtQueryInformationProcess(), NtOpenProcess(),
NtClose(), NtSetInformationThread(), NtYieldExecution(),
NtQueryObject(), NtQuerySystemInformation() and
NtSetContextThread() functions in ntoskrnl.exe by name,
and the GetWindowThreadProcessId(), EnumWindows(),
FindWindowA() and GetForegroundWindow() functions
in ntoskrnl.exe by service table index. What happens next
depends on the hook that is called:

• When the NtQueryInformationProcess() function is
called, the hook checks the ProcessInformationClass
parameter. If the ProcessDebugPort class was specifi ed,
then the hook zeroes the debug port, but without
checking the process handle. The correct behaviour
would be to zero the port only if the current process is
specifi ed. However, the current process can be specifi ed
in ways other than the pseudo-handle that is returned
by the kernel32 GetCurrentProcess() function, and that
must be taken into account.

If the ProcessBasicInformation class was specifi ed,
then the hook replaces the process ID of OllyDbg
with the process ID of EXPLORER.EXE in the
InheritedFromUniqueProcessId fi eld. This could be
considered a bug, since the true parent might not be
Explorer. The proper behaviour would be to use the process
ID of OllyDbg’s parent.

• When the NtOpenProcess() function is called, the hook
checks if the process ID to open matches the process ID
of OllyDbg or CSRSS.EXE, and returns an error in the
latter case.

• When the NtClose() function is called, the hook checks
for a valid handle before attempting the close. This hides
OllyDbg from the CloseHandle(invalid) detection method.

• When the NtSetInformationThread() function is called,
the hook checks if the HideThreadFromDebugger class
has been specifi ed, and returns success if that is the
case. There is a bug in this code, which is that if an
invalid handle is passed to the function, then an error
code should be returned. A successful return would be
an indication that PhantOm is running.

• When the NtYieldExecution() function is called, the
hook always returns a status. This hides OllyDbg from
the NtYieldExecution() detection method.

• When the NtQueryObject() function is called, the hook
checks for the ObjectAllTypesInformation class, and
then erases all the returned information if it is specifi ed.

• When the NtQuerySystemInformation() function is
called, the hook checks the SystemInformationClass
parameter. If the SystemKernelDebuggerInformation
class is specifi ed, then the hook erases all of the
returned information. If the SystemProcessInformation
class is specifi ed, then the hook adjusts the list to skip
those entries. However, the entries are untouched and
can be found by a brute-force search of the returned
buffer.

• When the NtSetContextThread() function is called, the
hook clears the CONTEXT_DEBUG_REGISTERS
fl ag from the ContextFlags fi eld before completing the
call. This prevents the debug register values from being
returned, and hides OllyDbg from the debug registers
detection method.

• When the GetWindowThreadProcessId() function is
called, the hook checks whether the process ID matches
the process ID of OllyDbg, and returns zero if that
is the case. This technique hides OllyDbg from the
window handle detection method.

• When the EnumWindows() function is called, the hook
removes from the list all windows whose process ID
matches that of OllyDbg. This technique hides OllyDbg
from the window handle detection method.

• When the FindWindow() function is called, the hook
checks whether the returned window handle belongs to
OllyDbg, and returns zero if that is the case.

• When the GetForegroundWindow() function is
called, the hook checks whether the returned window
handle belongs to OllyDbg, and returns the previous
foreground window handle in that case.

PhantOm installs a driver that makes the RDTSC
instruction illegal when called from ring 3. The driver
intercepts the exception that occurs when the instruction is
issued. When the exception occurs, the driver executes the
RDTSC instruction in ring 0, and then uses the low byte of
the returned value as the time elapsed since the last time
the RDTSC instruction was executed. This has the effect
of slowing perceived time, and hides OllyDbg from the
RDTSC detection method.

PhantOm sets the debuggee’s PEB->BeingDebugged fl ag
to zero.

One of the authors of PhantOm responded to the report:
the BlockInput() bug will be fi xed in a future version; the
KiUserExceptionDispatcher() and NtContinue() bugs will
remain, because Windows Vista is not supported.

VIRUS BULLETIN www.virusbtn.com

7MAY 2009

Stealth64

The Stealth64 plug-in forces OllyDbg to ignore the
OptionalHeader bug described in [6].

Stealth64 patches the code in OllyDbg that is reached when
it reads the debuggee’s imported function names. The patch
stops OllyDbg from displaying an error message if an
imported function name cannot be read.

The plug-in patches the code in OllyDbg that is reached
when it parses the debuggee’s Import Table. The patch stops
OllyDbg from displaying an error message if the import
table appears to be corrupted.

Stealth64 patches the code in OllyDbg that is reached when
it parses the debuggee’s Base Relocation Table. The patch
stops OllyDbg from applying relocations. However, this
also prevents OllyDbg from debugging certain fi les.

Stealth64 handles the exception-priority trick described in
[1] by forcing a single-step exception to occur in the ntdll
KiUserExceptionDispatcher() function.

The plug-in sets the debuggee’s PEB->BeingDebugged and
PEB->NtGlobalFlag fl ags to zero.

Stealth64 hooks the debugger’s kernel32 CreateProcessA()
function. The hook defi nes and sets the ‘_NO_DEBUG_
HEAP’ environment variable to one, before calling directly
into the kernel32 CreateProcessInternalA() function. This
environment variable forces a process to use a standard heap
instead of a debugging heap, even if the process is being
debugged.

Stealth64 removes the SeDebugPrivilege from the process
token.

Stealth64 hooks the debuggee’s ntdll
KiUserExceptionDispatcher() function. When an exception
occurs, the hook saves the state of the debug registers into a
private memory region if the ‘ProtectDRX’ option is enabled.
The hook swaps in the previous debug register values if the
‘HideDRX’ option is enabled, before passing the exception to
the debuggee. This tricks the debuggee into thinking that any
changes it makes are current. Stealth64 also hooks the ntdll
NtContinue() function, in order either to save the updated
debug register values on return from the debuggee if the
‘HideDRX’ option is enabled, or to swap back the original
debug register values if the ‘ProtectDRX’ option is enabled.

Stealth64 searches within up to 256 bytes of the debugger’s
ntdll DbgUiConvertStateChangeStructure() function
for a reference to the DBG_PRINTEXCEPTION_C
(0x40010006) exception, followed by an 0x75 opcode
(‘JNE’ instruction). If the sequence is found, then it replaces
the 0x75 opcode with an 0xEB opcode (‘JMP’ instruction).
The ntdll DbgUiConvertStateChangeStructure() function
was introduced in Windows XP, but Stealth64 runs only

in Windows Vista64, so there is no problem with earlier
versions of Windows. The effect of the patch is to prevent
the OUTPUT_DEBUG_STRING_EVENT debug event
from being delivered to the debugger. Instead, a generic
EXCEPTION_DEBUG_EVENT debug event is delivered to
the debugger. This hides OllyDbg from the GetLastError()
detection method. However, there is a bug in the search
routine, which assumes that all fi ve bytes can be read. If the
read accesses out-of-bounds memory, then OllyDbg will
crash.

Stealth64 intercepts the EXCEPTION_GUARD_PAGE
(0x80000001) exception and checks the address at which
the fault occurred. If the fault is not within the bounds of a
memory breakpoint, then the hook returns a status that the
event was not handled. This hides OllyDbg from the guard
page detection method.

Stealth64 changes the address in each of the debuggee
thread’s TEB->Wow32Reserved fi eld values, to point
to a dynamically allocated block of memory. That fi eld
is undocumented, but it normally points into a function
within the wow64cpu.dll which orders the parameters for
a 64-bit system call, and then falls into the wow64cpu
TurboDispatchJumpAddressStart() function to perform
the transition to kernel mode. By changing this fi eld value,
Stealth64 creates a clean single point of interception for all
system calls.

The block that Stealth64 allocates contains code to watch
for particular system table indexes. This act ties Stealth64
to a specifi c version of Windows Vista64. The indexes
that are intercepted are: NtQueryInformationProcess,
NtQuerySystemInformation, NtSetInformationThread,
NtClose, NtOpenProcess, NtQueryObject, FindWindow,
BlockInput, NtQueryPerformanceCounter, BuildHwndList,
NtProtectVirtualMemory and NtQueryVirtualMemory.
If none of these indexes is seen, and if the
‘HandleSingleStepExceptions’ option is enabled, then
Stealth64 will register a Vectored Exception Handler.
That handler consumes EXCEPTION_SINGLE_STEP
(0x80000004) exceptions that occur in the region of
memory that includes the injected code.

If the NtQueryInformationProcess index is seen, then the
hook calls the original TEB->Wow32Reserved pointer and
checks if the function has succeeded. If it has, then the
hook checks the ProcessInformationClass parameter. If the
ProcessDebugPort class is specifi ed, then the hook zeroes the
port and returns success. If the ProcessDebugObjectHandle
class is specifi ed, then the hook zeroes the handle and
returns STATUS_PORT_NOT_SET (0xC0000353). If the
ProcessDebugFlags class is specifi ed, then the hook sets
the fl ags to true, signifying that no debugger is present, and
returns success. The correct behaviour for these three classes

VIRUS BULLETIN www.virusbtn.com

8 MAY 2009

is for the changes to be applied only if the current process
is specifi ed. However, the current process can be specifi ed
in ways other than the pseudo-handle that is returned by the
kernel32 GetCurrentProcess() function, and that must be
taken into account.

If the ProcessBasicInformation class is specifi ed, then the
hook replaces the process ID of OllyDbg with the process ID
of EXPLORER.EXE in the InheritedFromUniqueProcessId
fi eld. This could be considered a bug, since the true parent
might not be Explorer. The proper behaviour would be to
use the process ID of OllyDbg’s parent.

If the NtQuerySystemInformation index is seen, the
ReturnLength is zero and the SystemInformationClass
is the SystemProcessInformation class, then the hook
uses the TIB->ArbitraryDataSlot fi eld to hold the
returned length. There is a bug here, which is that the
previous value in that fi eld is not saved, and the hook
always zeroes it before returning. The problem with this
approach is that it can be detected by malware that sets the
TIB->ArbitraryDataSlot fi eld value to non-zero, then calls
the ntdll NtQuerySystemInformation() function with no
ReturnLength parameter. Stealth64 is revealed because the
TIB->ArbitraryDataSlot fi eld value is zero.

In any case, the hook calls the original
TEB->Wow32Reserved pointer, and then checks if the
function has succeeded. If it has, then the hook checks that
the ‘Fake Parent’ option is enabled. If it is, then the hook
replaces the process ID of OllyDbg with the process ID of
EXPLORER.EXE in the InheritedFromUniqueProcessId
fi eld. This could be considered another bug, since the true
parent might not be Explorer (as before, the proper behaviour
would be to use the process ID of OllyDbg’s parent).

The hook also checks if the ‘NtQuerySystemInformation’
option is enabled. If it is, then the hook parses the returned
process list. The hook deletes the entry that corresponds to
OllyDbg by copying the entries that follow over the top and
then reducing the returned length.

If the NtSetInformationThread index is seen, and the
ThreadInformationClass is the HideThreadFromDebugger
class, then the hook returns success. There is a bug in this
code, which is that if an invalid handle is passed to the
function, then an error code should be returned. A successful
return would be an indication that Stealth64 is running.

If the NtClose index is seen, then the hook calls the ntdll
NtQueryObject() function to verify that the handle is valid.
If it is, then the hook calls the ntdll NtClose() function.
Otherwise, it returns STATUS_INVALID_HANDLE
(0xC0000008).

If the NtOpenProcess index is seen, then the hook attempts
to replace the process ID of OllyDbg with the process ID

of EXPLORER.EXE in the address to which the ClientId
parameter points. However, there are three bugs here: the
fi rst is that the hook does not check if the ClientId parameter
points to a valid memory location. An invalid memory
address causes an exception that can be intercepted by the
debuggee. Such an exception is a sure sign that Stealth64 is
running. The second bug is that the hook does not check if
the ClientId parameter points to a writable memory location
prior to attempting to replace the process ID. Writing to
a read-only memory address causes an exception that can
be intercepted by the debuggee. Such an exception is an
indication that Stealth64 is running. The third bug is that the
hook zeroes the upper 32 bits of the quadword to which the
ClientId parameter points. This can allow the function to
succeed in places where it should fail. A successful return in
that case is another sign that Stealth64 is running.

If the NtQueryObject index is seen, then the hook calls the
original TEB->Wow32Reserved pointer, then checks if the
function has succeeded. If it has, then the hook checks if the
ObjectInformationClass is the ObjectAllTypesInformation
class. If it is, then the hook searches the returned buffer for
all objects whose length is 0x16 bytes, and then zeroes the
object counts, without checking the object name. This is a
bug, since there could be other objects with the same name
length, and their handle counts will also be zeroed.

If the FindWindow index is seen, then the hook calls the
original TEB->Wow32Reserved pointer, and then checks
if the function has succeeded. If it has, then the hook calls
the user32 GetWindowThreadProcessId() function for
the returned window handle. The hook returns zero if the
returned process ID matches the process ID of OllyDbg.

If the BlockInput index is seen, then the hook simply returns.
This behaviour is a bug, since the return code is never set.

If the NtQueryPerformanceCounter index is seen, then the
hook calls the original TEB->Wow32Reserved pointer, and
then checks if the function has succeeded. If it has, then the
hook returns a tick count that is incremented by one each
time it is called, regardless of how much time has passed.

If the BuildHwndList index is seen, then the hook calls the
original TEB->Wow32Reserved pointer, and then checks
if the function has succeeded. If it has, then the hook
parses the returned hwnd list and then deletes the entry that
corresponds to OllyDbg by copying the entries that follow
over the top, and then reducing the returned length.

If the NtProtectVirtualMemory index is seen, then the hook
checks if the ProcessHandle parameter corresponds to the
GetCurrentProcess() pseudo-handle. If it does, then the
hook checks if the value in the memory location to which
the BaseAddress parameter points matches the location
of the internal breakpoint address that Stealth64 uses. If it

VIRUS BULLETIN www.virusbtn.com

9MAY 2009

does, then the hook returns success. There are three bugs
in this code, and one behaviour that could be considered
a bug. The fi rst bug is that the hook does not check if the
BaseAddress parameter points to a valid memory location.
An invalid memory address causes an exception that can
be intercepted by the debuggee. Such an exception is a
good indication that Stealth64 is running. The second bug
is that the BaseAddress parameter can span the region that
is protected by the internal breakpoint, and as a result the
comparison will fail. The third bug is that to return success
if the comparison succeeds might be incorrect behaviour
if the NewAccessProtection parameter specifi es an invalid
protection value. In that case, an error code should be
returned instead. The behaviour that could be considered
a bug is that the ProcessHandle parameter might contain a
handle to the current process, as returned by the kernel32
OpenProcess() function. This handle will not be recognized
as belonging to the current process.

If the NtQueryVirtualMemory index is seen, then the hook
checks if the BaseAddress parameter matches the location
of the internal breakpoint address that Stealth64 uses,
and that the VirtualMemoryInformationClass parameter
is zero. If those checks succeed, then the hook calls the
original TEB->Wow32Reserved pointer, and attempts to
set the value in the VirtualMemoryInformation->Protect
fi eld to Executable/Readable/Writable, if the
VirtualMemoryInformation parameter has been specifi ed.

There are four bugs in this code. The fi rst is that the
hook does not check if the function call succeeded.
The second bug is that the hook does not check if the
VirtualMemoryInformation parameter points to a valid
memory location. An invalid memory address causes an
exception that the debuggee can intercept. Such an exception
is a sure sign that Stealth64 is running. The third bug is that
the hook does not check if the VirtualMemoryInformation
parameter points to a writable memory location prior to
attempting to write the VirtualMemoryInformation->Protect
fi eld value. Writing to a read-only memory address causes an
exception that the debuggee can intercept. Such an exception
is a sure sign that Stealth64 is running. The fourth bug is
that the hook does not check the process handle for which
the request was made, which can lead to lying about the
memory state of a completely different process. The correct
behaviour would have been to check if the current process
is specifi ed. However, the current process can be specifi ed
in ways other than the pseudo-handle that is returned by the
kernel32 GetCurrentProcess() function, and that must be
taken into account.

A HandleInt2D option exists but it is not supported.

The author of Stealth64 responded to the report, and the
bugs will be fi xed in a future version.

Olly’s Shadow

Olly’s Shadow is a patched and renamed version of
OllyDbg. Since it is renamed, it hides OllyDbg from the
standard FindWindow() and process enumeration detection
techniques. Olly’s Shadow does not export any functions,
which avoids another common detection method on the
export name table. However, this prevents the use of
plug-ins, unless they use hard-coded addresses.

Olly’s Shadow behaves like Olly Invisible with respect
to the OutputDebugString handling, complete with the
same bug: Olly’s Shadow hooks the code in OllyDbg
that is reached when OllyDbg is formatting the kernel32
OutputDebugStringA() string, and then attempts to replace
all ‘%’ characters with ‘ ’ in the message. However, a bug in
the routine causes it to miss the last character in the string.

Olly’s Shadow changes the options that are used when
loading symbols, and then disables the name merging.
This avoids several problems with corrupted symbol fi les,
including the dbghelp.dll bug described in [1].

Olly’s Shadow changes the class name from ‘OLLYDBG’
to ‘SHADOW’, and the window title from ‘OllyDbg’ to
‘Shadow’.

The author of Olly’s Shadow could not be contacted.

In the fi nal part of this series next month we will look at
anti-debugging tricks that target other popular debuggers, as
well as some anti-emulating and anti-intercepting tricks.

The text of this paper was produced without reference to
any Microsoft source code or personnel.

REFERENCES
[1] Ferrie, P. Anti-unpacker tricks – part one. Virus Bulletin,

December 2008, p.4. http://www.virusbtn.com/
pdf/magazine/2008/200812.pdf.

[2] Ferrie, P. Anti-unpacker tricks – part two. Virus
Bulletin, January 2009, p.4. http://www.virusbtn.com/
pdf/magazine/2009/200901.pdf.

[3] Ferrie, P. Anti-unpacker tricks – part three. Virus
Bulletin, February 2009, p.4. http://www.virusbtn.com/
pdf/magazine/2009/200902.pdf.

[4] Ferrie, P. Anti-unpacker tricks – part four. Virus
Bulletin, March 2009, p.4. http://www.virusbtn.com/
pdf/magazine/2009/200903.pdf.

[5] Ferrie, P. Anti-unpacker tricks – part fi ve. Virus
Bulletin, April 2009, p.4. http://www.virusbtn.com/
pdf/magazine/2009/200904.pdf.

[6] Ferrie, P. Anti-unpacker tricks. http://pferrie.tripod.com/
papers/unpackers.pdf.

http://pferrie.tripod.com/papers/unpackers.pdf
http://www.virusbtn.com/pdf/magazine/2008/200812.pdf
http://www.virusbtn.com/pdf/magazine/2009/200901.pdf
http://www.virusbtn.com/pdf/magazine/2009/200902.pdf
http://www.virusbtn.com/pdf/magazine/2009/200903.pdf
http://www.virusbtn.com/pdf/magazine/2009/200904.pdf

VIRUS BULLETIN www.virusbtn.com

10 MAY 2009

CASE STUDY: THE TDSS ROOTKIT
Alisa Shevchenko
eSage Lab, Russia

This article is a case study of the TDSS malware, also
known as Tidserv, TDSServ and Alureon. Some of its
components are detected as Trojan.Win32.DNSChanger and
Trojan.FakeAlert.

There are several reasons for conducting a detailed study of
this malware:

1. Disinfection of TDSS seems to be problematic
for modern anti-malware solutions. At the time of
writing this article, a Google search for the malware
[1] results in a considerable number of forum posts
from desperate users whose anti-virus solutions have
detected the malware, but failed to remove it.

2. Detailed descriptions of this malware are not
available publicly.

3. TDSS is not rocket science! Despite being quite
advanced and posing problems for anti-malware
solutions, it does not engage any outstanding new
techniques.

4. TDSS is actively spreading in the wild and
developing into a wide and mighty botnet. According
to Kaspersky Lab [2], between 100 and 300 signature
detections are being added per day for new/modifi ed
TDSS components.

Thus, TDSS is a borderline type of threat: suffi ciently
advanced to cause problems for AV, or even to defeat it
completely, but not suffi ciently critical to trigger a detailed
study; widespread enough to cause numerous user issues,
but not serious enough to trigger a full epidemic alert.

FAMILY OVERVIEW
TDSS is known for its ability to bypass active protection/
HIPS, for its outstanding persistence and its rootkit
functions. Users with all kinds of anti-malware solutions
have reported problems disinfecting their systems.
Observable activity typically includes website redirects, ad
popups and the blocking of AV updating/loading activities.
Its functionality can vary widely though, since TDSS is
designed as a modular unit and additional components can
be downloaded and installed to provide extra features.

The fi rst TDSS infection reports date back to the middle of
2008. Even at that time the malware showed extraordinary
persistence, causing problems for users and demonstrating
the ability to bypass anti-malware protection. Given that
the malware’s creators have managed to keep this advanced

functionality up to date for almost a year now, and given
the malware’s code architecture and skilful implementation,
we can assume that TDSS is being developed with a clear
vision by a team of profi cient engineers.

TDSS itself is a very advanced modular downloader. Its
main goal is to persist in a system and to provide a means
for remote control (via a downloaded confi guration fi le)
and a framework for downloading/installing modules for
additional functionality.

TDSS is delivered to a PC through a wide and elaborate
distribution network. Known attack vectors include website
iframe attacks [3, 4] and bundling the malware with
pseudo-legitimate video codecs [5], as well as legitimate
software [6] and cracks [7] distributed via p2p networks.

Family traits
• The original name of TDSS (assigned by its creators)

is ‘TDL’. The most recent samples call themselves
‘TDL2’.

• The trojan fi les are protected from binary analysis using
code obfuscation and encryption.

• Some fi les contain a fake Microsoft version stamp.

• TDSS is installed when the msiexec.exe (Microsoft
Installer) service loads a legitimate, but maliciously
patched DLL [8].

• After installation, the trojan effectively prevents
anti-virus software from launching or updating.

• The trojan is persistent through a variety of techniques.
For example, some of the family members survive
Safe Boot. This is achieved by registering the trojan’s
driver in the HKLM\SYSTEM\ControlSet001\
Control\SafeBoot\Minimal and HKLM\SYSTEM\
ControlSet001\Control\SafeBoot\Network registry
keys.

• The trojan creates a (hidden) registry key to store its
confi guration information, such as the AV modules
that are to be denied Internet access, and the malicious
modules that are to be injected into browsers.

• The trojan hides its fi les and registry values by means
of several system hooks.

• The trojan uses the hooked function
ZwFlushInstructionCache as a communication gateway
to its own kernel driver.

FAMILY DIVERGENCE & RECENT UPDATES
Back in 2008, the presence of TDSS was marked by a
driver named TDSSserv.sys (after which the malware

FEATURE

VIRUS BULLETIN www.virusbtn.com

11MAY 2009

was named). Since then, malware-related fi le names have
changed several times, and have included clbdriver.sys,
seneka*.sys, UACd*.sys, gaopdx*.sys, tdlserv.sys and
others.

Another change is that recent samples patch msi.dll for their
installation, while the early samples used to patch
advapi32.dll. This is probably a reaction to the behavioural
heuristics that have recently been added to security
solutions.

In the most recent samples the code protection is designed
to make the trojan look like a regular system fi le or a
device-supporting utility. The unpacker stub is a big piece
of regular code, which means there is no extra entropy
throughout the fi le’s byte array (which is an easy-to-spot
sign of a packed fi le). Furthermore, the code is enriched by
random pseudo-legitimate ASCII strings and random API
calls designed to fool a hasty analyst into thinking it is a
legitimate piece of code.

The code protection itself is trivial: an easily removed
envelope with normal code inside.

Most recent samples of TDSS contain worm functionality.
The malware tries to distribute itself to removable drives by
copying its own body into all available drives as a hidden
*.com fi le in the hidden RECYCLER directory, and by
creating the fi le autorun.inf, with the fi le reference on the
same drive.

Most recent TDSS samples change systems’ DNS
addresses, thus causing all the hostname requests to fi lter
through a malicious service. This is a brilliant solution,
probably inspired by the much-talked-about DNS root
server vulnerability and the Evilgrade proof of concept
[9]. Distributing a spoofed DNS provider throughout the
network by means of a DHCP service gives an attacker
control of the entire network’s web traffi c, even as far as
delivering malware to clean machines under the guise of a
legitimate software update.

SAMPLE ANALYSIS
For analysis, I took a fairly recent sample, dated March/
April 2009 (MD5: 1DE66FC07C7B5893F5F83B397AC38
F3D). It is a specimen of the TDSS variety quoted by
Symantec Russia as being one of the most notable at the end
of March [10, 11].

The general execution fl ow of an average TDSS specimen
has already been described [9, 12], as have its basic
mechanisms in userland [4]. A summary of the high-level
functions of this particular sample is available from any
public sandbox [13]. I will be focusing on the trojan’s most
important features and driver functionality.

Trojan installation and protection bypassing
The trojan’s initial installation routine is notable, since it
allows behavioural protection/fi rewalls to be bypassed. The
idea is to force a legitimate service to load a legitimate,
but maliciously patched DLL. This is achieved via the
modifi cation of the msi.dll fi le in the \knowndlls directory,
followed by a regular launch of the Microsoft Installer
service:
NtCreateSection(..”\knowndlls\dll.dll”..) // new
section for a malicious dll

CopyFile(..”msi.dll”, <temporary_fi le>..) // preparing
the dll to patch

WriteFile(..<temporary_fi le>, <malicious_code_
injection>..) // patching

The injected code will call LoadLibrary, which will invoke
the malicious dll mapped into the \knowndlls\dll.dll section.
The shellcode is quite elegant:
push 7c906cbc ; pointer to ‘dll.dll’ – really this is
a calculated pointer to the last part of the
‘ntdll.dll’ name in the regularly mapped ntdll.dll

call $+5 ; call next instruction so that its address
is on the stack

sub dword ptr [esp], 0a ; now the fi rst dword on
the stack points to the fi rst shellcode instruction,
meaning that LoadLibrary will return there. Shellcode
will be replaced by original code by then.

mov eax, LoadLibrary

jmp eax ; call LoadLibrary (‘dll.dll’)

Once the infected dll has been prepared, the \knowndlls\
msi.dll section is recreated to point to an infected dll, and
the msiexec.exe service is started to force the now infected
library to be loaded:
NtOpenSection(..”\knowndlls\msi.dll”..)

NtMakeTemporaryObject(..) // clear the OBJ_PERMANENT
fl ag from section

CloseHandle(..)

NtCreateSection(..”\knowndlls\msi.dll”, ..
<temporary_fi le>..) //recreate the msi.dll section,
now pointing to the infected msi.dll library in
<temp fi lename>

..

StartService (..”Windows Installer”..)

The main idea of this technique is that, since it is executed
in the context of the Windows Installer, the malicious code
will have all the necessary privileges to download and
install anything. It downloads and installs a fresh build of
the TDSS kernel component.

Another advantage of the technique is that no obviously
malicious behaviour is exhibited, so a HIPS will fail here
until it ‘learns’ this particular trick.

The dll.dll functionality itself is quite simple, as can be seen
in the fl owchart shown in Figure 1.

VIRUS BULLETIN www.virusbtn.com

12 MAY 2009

The driver

TDSS does not have its own userland executable fi le. All
core functions are provided by a driver, which is loaded
automatically at startup. High-level functions are provided
by additional DLL module(s) injected into processes.

Core functions provided by the driver include:

• Hiding the trojan

• Providing a gateway into the kernel

• Distributing spoofed DNS servers to network services

• Blocking anti-virus solutions (listed in a confi guration
key) from loading

• Injecting a DLL into browser executables

• Installing new DLL modules.

ROOTKIT FUNCTIONALITY
The trojan hooks the following functions in the kernel:

IofCallDriver

IofCompleteReq

NtFlushInstructionCache

NtQueryValueKey

NtEnumerateKey

The latter three hooks are implemented via SDT
modifi cation. The NtEnumerateKey hook is used to hide all
the TDSS registry keys listed in the trojan’s confi guration
key (‘gaopdx*’ in this case), except for trusted processes.

The NtQueryValueKey hook is used to spoof DNS addresses
without modifying the registry (and therefore without
triggering a HIPS registry alert), via a substitution of
‘DhcpNameServer’ and ‘NameServer’ [14] registry values.

Hooks to IofCallDriver and IofCompleteRequest are
implemented by splicing the kernel code in ntkrnlpa.exe
in memory. They are used to hide the trojan’s fi les and
probably its network TCP activity.

A hook to IofCallDriver is used to infi ltrate all the IRPs
system wide, which allows the trojan to hide its own fi les
(beginning with the string ‘gaopdx*’ in this case) when it
catches an IRP to a fi le system driver:

If (FsRtlIsNameInExpression (..”*\\gaopdx*” or “*\\
TEMP\\gaopdx*”..))

Then return (STATUS_TOO_MANY_SECRETS)

IofCompleteRequest has a similar functionality.

Ring0 communication gateway
The NtFlushInstructionCache hook is slightly more
interesting, providing a non-typical communication gateway
to the driver. To make use of the gateway, one should call
the NtFlushInstructionCache API as follows:
push 0 ; argument to the command

push ‘VERG’ ; 4-byte command, allowing to prove the
hook is in place

push ‘TDL2’ ; a magic value which leads execution to
the command processor and not to the original API

call ds:ZwFlushInstructionCache ; this is a piece
of code from the dll.dll component, checking for the
presence of the core driver.

Figure 1: IDA-generated fl owchart of the dll.dll.

VIRUS BULLETIN www.virusbtn.com

13MAY 2009

The scope of available commands is very limited and, in
contrast to some security drivers, will not allow control
to be taken of the driver. Available commands include
passing trojan-related variables from the kernel to userland,
inserting a termination job (via a kernel APC) into a given
process or thread, and maintaining installation of new
DLL modules.

Persistent functionality
The driver engages ExQueueWorkItem to launch a number
of kernel threads. The execution fl ow of the work items is
looped to provide periodic execution. The three work items
provide periodic renaming and re-registering of the trojan’s
driver (‘\registry\machine\system\currentcontrolset\services\
gaopdxserv.sys’), disabling of a system fi rewall (‘\registry\
machine\system\currentcontrolset\services\sharedaccess\
parameters\fi rewallpolicy\’) and other functions.

Blocking security solutions
The driver installs, via PsSetLoadImageNotifyRoutine,
a system-wide callback for newly loaded modules. In
the hook, a check is performed as to whether the module
being loaded is included in the ‘disallowed’ list in the
trojan’s confi guration registry key. The driver will prevent a
disallowed module from loading.

MANUAL DISINFECTION
Manual disinfection of TDSS is trivial. The following
instructions are for a generic method that will completely
remove any specimen of the TDSS family. This removal
method is suitable for any end-user, since it is very simple
and requires neither special skills nor specifi c tools:

1. Go to Device Manager and turn off and delete any
inappropriate ‘Non PnP driver’ there.

 You can search for a specifi c name (quadraserv.sys
in this case, or gaopdx*/TDSS*/clbdriver/seneka/etc
.sys in the case of a typical TDSS family member),
but the name is subject to change, so it is best not to
rely on it.

 After this manipulation, the worm’s fi les and registry
values that were hidden become visible, and thus
possible to be removed by hand.

 Note: An anti-rootkit can be used reliably to locate
the trojan’s core fi les. GMER or RkU are the best
choices; Avira Antirootkit also copes with the task.

2. Remove the fi le corresponding to the device just
deleted. If there is no such fi le, try sorting system32/

drivers and system32/ fi les by creation date and
remove whatever looks suspicious according to its
name and content. TDSS core fi les consist of a .sys
and one or more .dlls.

3. Search throughout the registry using the malicious
device and fi le name strings found in steps 1 and 2.
Delete all the relevant keys.

4. Remove all the <drive letter>://autorun.inf and
<drive letter>://RECYCLER/*.com fi les, if any.

5. Reboot.

6. Launch your AV, and let it clean the rest (TMP fi les
etc.)

Note that steps 1–4 must be carried out manually, without
any anti-malware, because if an anti-malware product
lacks a single signature for a trojan’s core fi le, the fi le
will not be removed and the malware will return after
reboot.

CONCLUSIONS

• The success of TDSS proves that the bypassing of
protection mechanisms is a straightforward task, for
which no kind of advanced invention is necessary.

• Malware writers continue to explore unobtrusive ways
of bypassing protection [15]. In the case of TDSS,
the skilful utilization of a whitelisted application to
download and install malware is observed.

• Bundling malware together with legitimate software
is an effective technique (though not new). The idea is
that if a user is intentionally launching an application,
s/he will probably skip any security alerts, including
driver installation alerts (which are quite normal, for
example, in the case of a video codec installation [5])
and UAC. Furthermore, some behavioural protection
solutions might be fooled by the visible application
window.

• Redirecting a whole network’s DNS traffi c to an
attacker’s service is an extremely important innovation,
since it allows for the transparent delivery of malware
to clean machines, as well as serving malicious
redirects. It’s almost like a new kind of worm
functionality.

Behavioural protection/HIPS developers should consider
keeping an eye on the behaviours/actions that allow TDSS
to succeed:

• NtOpenSection, NtMakeTemporaryObject and other
functions allowing tampering with system sections.

• Accessing a system DLL fi le.

VIRUS BULLETIN www.virusbtn.com

14 MAY 2009

• LoadLibraryEx with a parameter of
DONT_RESOLVE_DLL_REFERENCES, which is
used by dll.dll to load the original msi.dll.

• Tampering with system DNS and DHCP confi guration.

• PsSetLoadImageNotifyRoutine. Though a protection
may be turned off by the time this API call is made, it
may not be.

Although most of these actions are not malicious by
themselves, they clearly pose a minor threat and thus
should be considered in combination, supplied with
reasonable threat weights, and within a particular process
execution context.

REFERENCES
[1] http://www.google.com/search?q=tdss+%7C

+tidserv+%7C+tdsserv+daterange:01012009-
26042009+inurl:forum.

[2] http://www.kaspersky.com/viruswatchlite?search_
virus=TDSS.

[3] http://ddanchev.blogspot.com/2009/01/embassy-of-
india-in-spain-serving.html.

[4] http://mad.internetpol.fr/archives/3-Etude-de-cas-
Infection-rootkit-TDSS.html.

[5] http://www.threatexpert.com/report.aspx?md5=2c5c
874235a73fc50a69780c7ad1488a.

[6] http://www.threatexpert.com/report.aspx?md5=d2ad
a2dba8e036d37726ebddbcc9e9d6.

[7] http://www.threatexpert.com/report.aspx?md5=b17d
76537ef5d94547fc4ca8851b35da.

[8] http://www.symantec.com/security_response/
writeup.jsp?docid=2008-091809-0911-99.

[9] http://www.infobyte.com.ar/down/isr-evilgrade-
Readme.txt.

[10] http://www.symantec.com/security_response/
writeup.jsp?docid=2009-032211-2952-99.

[11] http://www.anti-malware.ru/node/1250.

[12] http://www.f-secure.com/v-descs/backdoor_w32_
tdss.shtml.

[13] http://www.virustotal.com/analisis/
122e4ade1c0fa88cbab02880a3b2ed98.

[14] http://technet.microsoft.com/en-us/library/
cc962470.aspx.

[15] Shevchenko, A. Advancing malware techniques
2008. Virus Bulletin, January 2009.
http://www.virusbtn.com/pdf/
magazine/2009/200901.pdf.

VB2009 GENEVA
23–25 SEPTEMBER 2009

Join the VB team in Geneva, Switzerland for the
anti-virus event of the year.

What: • Three full days of presentations by
 world-leading experts

 • In-the-cloud technologies

 • Automated analysis

 • Anti-spam testing

 • Rogue security software

 • Online fraud

 • Web 2.0 threats

 • Legal issues

 • Last-minute technical presentations

 • Networking opportunities

 • Full programme at
 www.virusbtn.com

Where: The Crowne Plaza, Geneva, Switzerland

When: 23–25 September 2009

Price: VB subscriber rate $1795 – or register
 before 15 June for a 10% discount

BOOK ONLINE AT
WWW.VIRUSBTN.COM

GENEVA
2009

http://www.google.com/search?q=tdss+%7C+tidserv+%7C+tdsserv+daterange:01012009-26042009+inurl:forum
http://www.kaspersky.com/viruswatchlite?search_virus=TDSS
http://ddanchev.blogspot.com/2009/01/embassy-of-india-in-spain-serving.html
http://mad.internetpol.fr/archives/3-Etude-de-cas-Infection-rootkit-TDSS.html
http://www.threatexpert.com/report.aspx?md5=2c5c874235a73fc50a69780c7ad1488a
http://www.threatexpert.com/report.aspx?md5=d2ada2dba8e036d37726ebddbcc9e9d6
http://www.threatexpert.com/report.aspx?md5=b17d76537ef5d94547fc4ca8851b35da
http://www.symantec.com/security_response/writeup.jsp?docid=2008-091809-0911-99
http://www.infobyte.com.ar/down/isr-evilgrade-Readme.txt
http://www.symantec.com/security_response/writeup.jsp?docid=2009-032211-2952-99
http://www.anti-malware.ru/node/1250
http://www.f-secure.com/v-descs/backdoor_w32_tdss.shtml
http://www.virustotal.com/analisis/122e4ade1c0fa88cbab02880a3b2ed98
http://technet.microsoft.com/en-us/library/cc962470.aspx
http://www.virusbtn.com/pdf/magazine/2009/200901.pdf

VIRUS BULLETIN www.virusbtn.com

15MAY 2009

COMODO INTERNET SECURITY
John Hawes

Comodo has long been something of a mystery to me.
Best known for its very highly regarded fi rewall products
and more high-level security solutions, the company has
also built up a considerable reputation and following
for its anti-virus offering, but has yet to take part in
VB’s certifi cation tests and is not well represented in
other independent tests either. Among the small group
of anti-virus products never to have joined in a VB100
comparative review, Comodo has by far the most vocal
supporters. We receive more queries about the product’s
non-appearance in our tests, and requests for information on
its performance, than for any other product.

On receipt of the fi rst of the many inquiries about the fi rm
a number of years ago, I checked out its various websites
and made contact, discovering that the company’s product
was being made available free of charge as a long-term beta
project – which was considered unsuitable for testing at that
stage. The beta phase went on for quite some time, with a
string of ancillary products emerging alongside the initial
anti-virus, and continued to build up reputation and interest.
With a full product range properly released several versions
ago and now well established, it seemed high time for the
VB test team to take a quick look at the company’s current
fl agship product, the Internet Security suite.

WEB PRESENCE AND SUPPORT
Comodo’s online presence has a very slick and professional
look and feel, with the company’s wide range of
security-related tools and solutions mostly presented in
separate microsites, making the main www.comodo.com
perhaps a little more product-oriented than the sites of many
security vendors. The range of desktop security solutions
is presented in the main body of the front page, but the
pull-down ‘Products’ list focuses almost entirely on a wider
selection of business-oriented security solutions – secure
messaging and web access, code and website signing, VPN,
backup and compliance solutions, and much else besides.

While the standard likes of company news and general
security information are present, it is the product range that
takes centre stage, with the company’s marketing strategy for
its desktop anti-malware and fi rewall products immediately
obvious. The strategy of making basic versions of the
products freely available for home use, while charging for
the more multi-layered, well-supported ‘pro’ and corporate
versions, is one which has proved highly successful for
many vendors. Here, just about every product in the range
is offered as a free, standalone edition, and even a suite is

made available without charge. This strategy is not simply
a marketing tool, however – as anti-malware increasingly
makes use of distributed global knowledgebases, with
users contributing information on safe applications and
behaviours, strong market penetration and a broad user
base have become increasingly important aspects of the
protection provided by a product. Many users will be baffl ed
by popup alerts that provide highly technical information
about an application or activity and which require the user
to make some decision as to what course of action should be
taken. This problem is mitigated by the provision of ‘herd’
information on the alert: the opinions of the collective are
provided as an aid to decision making. The issue of whether
the opinions of the collective can be trusted remains a thorny
one, but at least such systems provide some assistance.

The user community performs another function in the form
of the support provided by online forums. Comodo hosts
some bustling and well-administered forums and FAQs,
providing a wealth of information and assistance on the full
range of products, and the company’s users – expert and
otherwise – are similarly well represented on several other
popular security forums.

For those choosing to pay for a more advanced product,
the level of support offered is one of the most important
decision-making factors – and here lies one of the most
distinctive selling points of Comodo’s fl agship line. A
complete support package is available as an upgrade to the
standard subscription, with the support provided directly
to the user’s PC via a proprietary remote access system.
This allows the fi rm’s techs to get in and fi x issues with
their customers’ systems without the need for complex and
diffi cult explanations to inexpert users over the phone or
email. Indeed, the copy of the product we were provided
with for review came with the offer to have it remotely
installed and confi gured by an expert. The support offering
extends far beyond the basics of setting up the product and
dealing with the problems caused by it or any malware
it fails to detect – it also seems to cover just about any
PC-related issue the customer may have, from installing
software to setting up printers. This is not something I
am aware of many other vendors providing, and it makes
for a pretty impressive unique selling point for Comodo.
Unfortunately there was insuffi cient time to test the service
with any complex issues, and since much of our interest lay
in checking out the performance of the anti-malware engine,
we opted to do our own installations in the VB lab.

INSTALLATION AND CONFIGURATION
The set-up process runs along fairly standard lines. The fi rst
item of note is that the product is included as a complete
download, rather than one of the tiny download-and-install

PRODUCT REVIEW

VIRUS BULLETIN www.virusbtn.com

16 MAY 2009

systems that seem to be growing in popularity with vendors
these days, and appears to be updated fairly regularly. This
pleased me, as working in the security industry and thus
being somewhat paranoid, I always like to have security
software installed, running and reasonably up to date on
any new system before I think about connecting it to the
Internet– which is not always possible with some solutions.

The initial stage of the installer presents a rather clunky
self-extracting dialog, which hovers in the background
throughout the install process, but the installation GUI
itself is much more slick and attractive. It runs through
the standard stages of EULA, choice of install location
and space requirements (the product needs a minimum
of 123 MB of hard drive space – not too much of a strain
for any modern system), and then some further options
on which components to install – the suite can be used
as just the fi rewall, just the AV, or both (which is the
default setting). Next comes the option to contribute to the
‘Threatcast’ community collaboration system, with ample
information provided on how this works and what kind of
data might be shared. A fi nal component is offered in the
form of a browser toolbar in collaboration with the Ask
search engine. This offers to reset the default browser search
to Ask and the homepage to Comodo. Both of these are
active by default, which I’m not too keen on, but this seems
to be pretty standard with toolbars. After a few further steps
of fi nalizing, connecting to the community system and
activation, a reboot is required to fi nish things off.

The main interface of the product is pretty impressive: it is
quite attractive and well laid-out, uncluttered and clear. Status
information is provided on various aspects of the product, the
anti-malware and fi rewall systems, in simple terms with easy
links to run scans or lock down the fi rewall. Further data on
active processes and connections is also included.

More information and options for the various
components are accessed via separate pages for the
anti-malware, fi rewall and ‘Defense+’ HIPS systems,
with a ‘miscellaneous’ tab providing the likes of interface
password and language options, updating, suspect fi le
submission, access to online forums, and help. Each of
the main areas provides a good range of controls for the
given module, and each is accompanied by clear and
simple explanations of the options available. Of these,
the anti-malware is likely to be the most straightforward
for the majority of users, with the controls for the fi rewall
and HIPS systems likely to need a little more effort for
the average inexpert user to comprehend, while some of
the options provided in the advanced areas are likely to be
unsuitable for any but the keenest users. Help is generally
available however, and with a little application and research
all of these options can be used to improve and enhance the
level of security provided.

As with all security products, the ‘set and forget’ approach
is only as good as the default settings. Here they seem
pretty sensible across the board, but to get the most out of
any product the user needs to invest some time to study and
understand the threats they face and how they can best be
mitigated – something we encourage all users to do.

MALWARE DETECTION AND SYSTEM
PROTECTION
Having familiarized ourselves with the layout of the product
we got down to our principal area of interest: the detection
capabilities of the anti-malware engine. Having confi rmed
that the on-access component was fully operational and
having disabled the warning popups (which would have
seriously impeded on-access tests), we ran the product
through most of the standard VB100 tests using the same
systems and test sets as used in the most recent comparative
(see VB, April 2009, p.15). As the product had not been frozen
on the correct deadline for that test, this would not provide
results that could be compared scientifi cally against those of
the large fi eld of entrants last month, but we hoped it would at
least provide a general overview of the product’s abilities.

The fi rst hurdle here was determining the exact date of the
product as downloaded. On installation an attempt was
made to update, and indeed the update status claimed that
the product had been updated on the day of the install. As
we were running the product on a machine in a sealed-off
part of the VB test lab, with no access to the Internet, this
was somewhat baffl ing. To get around this, we also took the
updates from an Internet-connected system and used them
in a second run through the tests, this time using updates
confi rmed to be almost exactly a month more recent than
those required for the original test that used these sets.

The fi rst things we looked at were scanning speed and
false positive rates, running the product through our full
standard clean sets. This proved very impressive, with a few

VIRUS BULLETIN www.virusbtn.com

17MAY 2009

suspicious alerts on unusual packers but no full false positives
at all – a remarkable achievement given the problems our
test sets have been known to cause products in the past, and
given that this was the fi rst time the sets had been checked
with this scanner. Scanning speeds were pretty good too,
perhaps not quite at the very top of the fi eld but comparing
favourably with most of the products included in the last
comparative test. This proved true in both on-access and on-
demand modes, demonstrating on-access overheads that were
well within acceptable levels. Indeed, at no point throughout
the testing did we observe any untoward slowdown on our
systems, even when running under heavy strain.

Moving on to the malware detection side of things, we
ran through the complete set of test samples used in the
last VB100, and here things were perhaps not quite so
impressive. In some sets detection rates were fairly high,
coming in at around 95% on the older set of worms and
bots and also on the WildList set (although here we would
expect nothing less than 100% in a top-quality product).
The trojans set, containing samples fi rst seen a few months
prior to the test, was reasonably well covered at a level on a
par with much of the mid-fi eld in the last comparative, but
the more recent RAP sets were not so well handled. It was
in the polymorphic sets that the most worrying performance
was seen however, where there was very little coverage at
all. With the test sets including numerous variants of the
nasty and complex W32/Virut family, none of which were
detected, this is clearly an area that should be improved.

Another issue that quickly became clear was one of
instability. Several times during our attempts to get through
the tests the product experienced problems, crashing on
a fairly regular basis. This seemed to occur only during
on-demand scanning, and while the on-demand scanner
generally refused to initiate any further actions until a
reboot, in most situations it seemed that the on-access
protection remained active. Only on one occasion did the
product become fully nonoperational. All of these problems
occurred during intensive scanning of large numbers of
infected samples. They appeared not to be directly related
to any specifi c sample, as on subsequent occasions the same
sets were scanned without diffi culty. The pattern of crashes
hinted at there being some issues related to the handling of
large numbers of detections in a short period, perhaps not
helped by the product’s impressive speedy scanning rate
over infected items. The problems thus seem unlikely to
affect the real-world user, but nevertheless we will provide
full details to the developers to ensure nothing more serious
underlies our experiences.

Not all is doom and gloom however, as the basic static
detection is not the only protection feature available. The
HIPS system, dubbed ‘Defense+’, combined with the
outbound portion of the fi rewall, offers an extra layer of

defence, and trying
this out against some
of the samples that the
on-access anti-malware
component had allowed
to run provided much
more encouraging
results.

Running numerous items
against the product’s
fi lters and hooks, it
seemed that nothing we
could throw at it would
be allowed to operate
completely uninhibited.
Most of the more serious
malicious activities,
such as doctoring or
creating registry entries,
dropping fi les in system
folders or drive roots,
initiating network
connections, injecting
code into memory or
running processes and so
on, were blocked or at
least alerted on. While popup alerts are not always the most
useful tool, with many users likely to grow frustrated by
them and simply click ‘OK’ regardless of the message text,
they do at least provide some protection against malicious
activities, and hopefully users are growing more alert to the
dangers of malware. The popups are also supported by the
opinions of the community system which, in most cases,
seemed to advise taking the most sensible course of action.

Of course, not every activity of the malware was entirely
prevented. While most clearly unwanted behaviours were
easily brushed aside, fi les were not stopped from being
dropped into unprotected areas, and some apparently less
signifi cant tweaks were allowed to be made to the registry
and other settings. This is less than ideal, and users may
want to run occasional checks with additional software to
clean up any potentially dangerous remnants – which is a
good policy with any anti-malware solution. The product
range also has a strong reputation for post-infection
cleanup, which unfortunately we did not have time to
investigate in any depth; we hope to develop additional
metrics to measure such things in the near future.

OTHER FUNCTIONALITY
The fi rewall is one of Comodo’s main strengths – it is one
of the most highly regarded on the market, and from a quick

run through seems to perform excellently. The basic set-up
is fairly rigorous, and confi guration is available both at a
basic level and in depth. Simple sliders provide various
levels of paranoia, from fairly lax and trusting to complete
lockdown, and the default provides a happy medium with
not too many alerts and popups. The advanced confi guration
options provide a wealth of fi ne-tuning, presented with
clarity and simplicity, but as is generally the case with
such things, a minimum level of understanding is required
to ensure the right changes are implemented properly. A
few options proved rather diffi cult to locate, but generally
the layout made good sense and after some familiarization
nothing we could have wished for was lacking.

The same is true of the HIPS system, which provides a
similarly intensive level of confi guration in a pleasingly
similar style, making for good continuity across the two
modules. The addition and fi ne-tuning of fi lters focusing
on particular areas of the system or registry, particular fi le
types, specifi c applications and even developers is laid
out in a highly usable manner, in the same way that the
fi rewall provides fi ne-tuning of fi lters of network zones,
connections, ports, and applications. While some members
of the test team would have liked to have seen some
additional areas monitored by default, most of the standard
settings seemed pretty thorough, and the level of control
easy to adjust via another paranoia slider.

Another component of the suite is the optional toolbar
which, along with some standard items from Ask, includes
Comodo’s ‘SafeSurf’ technology, designed to monitor
memory for buffer overfl ow attacks and similar web-based
threats. Not being big fans of toolbars in general, and being
rather short of time, we didn’t investigate this thoroughly,
but it seemed to offer some useful protection (although we
noted that some of the associated data-gathering and other
toolbar tactics have come in for some criticism from various
online commentators).

One fi nal module which deserves a mention is a process
viewer, which displays all running processes along with
some brief details and provides the option to terminate
anything that is unwanted. This is another tool that will be
of most use to the well-initiated, but again it is presented in
a clear and simple style with good usability.

CONCLUSIONS
Having approached Comodo’s product as an almost
completely unknown entity, the overall impression it has
left after an all-too-brief acquaintance is a favourable one.
The design is both visually appealing and easy to navigate
– which is not always an easy combination to pull off. The
multi-layered protection seems to provide a pretty decent
standard of security with the default settings and offers
a really quite excellent depth of confi guration. The user
community backing it all up is clearly highly active and
committed, which are vital components in any herd-based
system. The additional support offering, covering a vast
range of computer support needs, is just about unique.

Although we encountered a few issues with the
anti-malware scanners, including some less than excellent
detection rates, these should improve as the company
becomes more established, gets more involved in testing
and improves relations with the rest of the industry. The
stability issues we encountered in our intensive tests were
also fairly minor, and unlikely to affect most real-world
users. The only other downside to the product is a fairly
large number of popups, particularly during the initial
stages of use. Although these will generally be assisted by
the group consensus data, they do require some decision-
making from the user. They can also be tweaked and
confi gured to be more automated and less intrusive, but
again, the users will have to apply themselves to ensure the
appropriate settings for their situation.

As we have commented many times before, to get the most
out of any security product, users have to make some effort
to learn how their computers work and what effect their
decisions will have. Perhaps those who are not willing to
do so should not expect to operate with complete impunity
in an online world riddled with criminals and con men; for
those who understand both the threats and how to defend
against them, this product provides the full range of control
necessary to provide a highly secure environment.

Technical details

Comodo Internet Security 3.8 was variously tested on:

AMD Athlon64 3800+ dual core, 1 GB RAM, running Microsoft
Windows XP Professional SP3 and Windows Vista x64 SP1.

Intel Atom 1.6 GHz netbook, 256 MB RAM, running Microsoft
Windows XP Professional SP3.

VIRUS BULLETIN www.virusbtn.com

18 MAY 2009

The 18th EICAR conference will be held 11–12 May 2009 in
Berlin, Germany, with the theme ‘Computer virology challenges
of the forthcoming years: from AV evaluation to new threat
management’. For more information including programme details
see http://eicar.org/conference/.

SEaCURE.IT will be held 19–22 May 2009 in Villasimius,
Italy. SEaCURE.IT, the fi rst international technical conference
to be held in Italy on security-related topics, is aimed at bringing
together leading experts to create a unique setting for networking
and discussion among the speakers and the attendees. For details see
http://www.seacure.it/.

NISC 10 will take place 20–22 May 2009 in St Andrews, Scotland.
For more details including provisional agenda and online registration
see http://www.nisc.org.uk/.

SecureScandinavia takes place on 2 June 2009 in Stockholm,
Sweden. The one-day conference will focus on emerging threats,
discussing the importance of digital control systems and the
protection of and guidelines for SCADA systems. Presentations
will focus on the practical implementation of security measures for
critical infrastructures. See http://www.isc2.org/EventDetails.aspx?
id=3810.

The 21st annual FIRST conference will be held 28 June to 3 July
2009 in Kyoto, Japan. The conference focuses on issues relevant to
incident response and security teams. For more details see
http://conference.fi rst.org/.

A Mastering Computer Forensics masterclass will take place
22–23 July 2009 in Jakarta, Indonesia. This intensive hands-on
training course covers topics including: the tools required to perform
a number of basic forensics techniques; methods and procedures
to maximize effectiveness of evidence gathering; and legal and
process issues surrounding incident response, litigation support and
preserving evidence for presentation in a court of law. For details see
http:// www.machtvantage.com/.

Black Hat USA 2009 will take place 25–30 July 2009 in Las
Vegas, NV, USA. Training will take place 25–28 July, with the
briefi ngs on 29 and 30 July. Online registration is now open and a
call for papers has been issued, with a deadline for submissions of
1 May. For details see http://www.blackhat.com/.

The 18th USENIX Security Symposium will take place 12–14
August 2009 in Montreal, Canada. The 4th USENIX Workshop on
Hot Topics in Security (HotSec ’09) will be co-located with USENIX
Security ’09, taking place on 11 August. For more information see
http://www.usenix.org/events/sec09/.

Hacker Halted 2009 takes place in Miami, FL, USA, 23–24
September 2009. See http://www.hackerhalted.com/.

VB2009 will take place 23–25 September
2009 in Geneva, Switzerland. Early bird
registration rates apply until 15 June 2009.
For the full conference programme

including abstracts for all papers and online registration, see
http://www.virusbtn.com/conference/vb2009/.

The third APWG eCrime Researchers Summit will be held 13
October 2009 in Tacoma, WA, USA in conjunction with the 2009
APWG General Meeting. eCrime ’09 will bring together academic
researchers, security practitioners and law enforcement to discuss all
aspects of electronic crime and ways to combat it. For more details
see http://www.ecrimeresearch.org/.

GENEVA
2009

SecureLondon Workshop on Information Security Audits,
Assessments and Compliance will be held on 13 October 2009 in
London, UK. See http://www.isc2.org/EventDetails.aspx?id=3812.

RSA Europe will take place 20–22 October 2009 in London,
UK. The 2009 conference celebrates the life and work of writer and
poet Edgar Allan Poe and his infl uence on the fi eld of cryptography.
Online registration opens 12 May 2009. For full details see
http://www.rsaconference.com/2009/europe/.

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic
Dr Sarah Gordon, Independent research scientist, USA
John Graham-Cumming, France
Shimon Gruper, Aladdin Knowledge Systems Ltd, Israel
Dmitry Gryaznov, McAfee, USA
Joe Hartmann, Microsoft, USA
Dr Jan Hruska, Sophos, UK
Jeannette Jarvis, Microsoft, USA
Jakub Kaminski, Microsoft, Australia
Eugene Kaspersky, Kaspersky Lab, Russia
Jimmy Kuo, Microsoft, USA
Anne Mitchell, Institute for Spam & Internet Public Policy, USA
Costin Raiu, Kaspersky Lab, Russia
Péter Ször, Symantec, USA
Roger Thompson, AVG, USA
Joseph Wells, Lavasoft USA

SUBSCRIPTION RATES
Subscription price for 1 year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500
Corporate rates include a licence for intranet publication.

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:
Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England
Tel: +44 (0)1235 555139 Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com Web: http://www.virusbtn.com/
No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.
This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.
VIRUS BULLETIN © 2009 Virus Bulletin Ltd, The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. /2009/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

END NOTES & NEWS

MAY 2009 19

VIRUS BULLETIN www.virusbtn.com

http://eicar.org/conference/
http://www.seacure.it/
http://www.nisc.org.uk/
http://www.isc2.org/EventDetails.aspx?id=3810
http://conference.first.org/
http://www.machtvantage.com/computerforensics.html
http://www.blackhat.com/
http://www.usenix.org/events/sec09/
http://www.virusbtn.com/conference/vb2009/
http://www.ecrimeresearch.org/
http://www.isc2.org/EventDetails.aspx?id=3812
http://www.rsaconference.com/2009/europe/
http://www.virusbtn.com/virusbulletin/subscriptions/
http://www.virusbtn.com/
mailto:editorial@virusbtn.com
http://www.hackerhalted.com/

CONTENTS

S1MAY 2009

FEATURE
MAIL AUTHENTICATION WITH
DOMAIN KEYS IDENTIFIED MAIL
– PART TWO
John Levine
Taughannock Networks, USA

In last month’s article (see VB, April 2009, p.S1), we
learned about the mechanics of DKIM, DomainKeys
Identifi ed Mail, a message authentication system that has
recently been standardized by the IETF. DKIM allows a
signer to add a DKIM-Signature header to a mail message.
The header includes a hash of the message body and
headers, and a cryptographic signature that can only be
decoded by a key stored in the signing domain’s DNS. The
recipient(s) of the message can check the signature to verify
both that the message has not been modifi ed since it was
signed and, using the decoding key from the DNS, that it is
a genuine signature from the signing domain.

HOW DKIM FITS INTO MAIL FILTERING
It is surprisingly tricky to integrate DKIM into mail fi ltering
setups, not because the authentication system is inherently
hard to use, but because most current fi ltering technology
is based on weeding out unwanted mail, and DKIM
doesn’t fi t into that model. DKIM will be most useful for
recognizing mail from known good senders who sign their
mail. This can be achieved by whitelisting mail with those
senders’ signatures.

The key to effective use of DKIM is for each message to
have a signature that the recipient recognizes. If a message
has a signature with a d= domain that is included on a
recipient’s whitelist, the recipient’s mail server can safely
skip the spam fi lters and just deliver it. This works even
when the d= domain doesn’t match the From: line header.
For example, on my system, my users have about a dozen
personal domains that they use in their outgoing mail, but
I know them all and am confi dent that they will behave
themselves, so I put a signature on all of the outgoing mail
with my own domain. This lets them all benefi t from a
receiver’s single whitelist entry.

Large mail systems already maintain reputation databases
that track the sources of good and bad mail. When an AOL

S1 NEWS & EVENTS

S1 FEATURE
 Mail authentication with Domain Keys
 Identifi ed Mail – part two

S5 COMPARATIVE REVIEW
 Anti-spam comparative review May 2009

NEWS & EVENTS
INDICTMENT FOR UNIVERSITY
SPAMMERS
A group of four spammers were indicted by a federal grand
jury in Missouri last month after they masterminded an
extensive spamming campaign targeting more than 2,000
colleges and universities across the US.

It is believed that the group developed email-harvesting
programs that were used to obtain more than eight million
student email addresses. The campaign began at the
University of Missouri, where one of the four was studying
at the time, then spread, eventually targeting almost every
college and university in the country.

In total, the four face more than 50 charges including fraud
in connection with computers, fraud in connection with
email, conspiracy, and violations of the CAN-SPAM Act.
The defendants face up to ten years imprisonment and the
indictment also contains a forfeiture allegation which, upon
conviction, would require them to give up their $4.1 million
in proceeds.

EVENTS
The Counter-eCrime Operations Summit will be held 12–14
May 2009 in Barcelona. See http://www.antiphishing.org/.

The 16th general meeting of the Messaging Anti-Abuse
Working Group (MAAWG) will be held in Amsterdam, The
Netherlands, 9–11 June 2009. See http://www.maawg.org/.

Inbox/Outbox 2009 takes place 16–17 June 2009 in London,
UK. See http://www.inbox-outbox.com/.

The sixth Conference on Email and Anti-Spam (CEAS)
will be held 16–17 July 2009 in Mountain View, CA, USA.
See http://www.ceas.cc/.

http://www.antiphishing.org/
http://www.maawg.org/
http://www.inbox-outbox.com/
http://www.ceas.cc/
http://www.virusbtn.com/pdf/magazine/2009/200904.pdf

SPAM BULLETIN www.virusbtn.com

MAY 2009S2

user clicks the spam button to complain about a message,
AOL updates its reputation database about the source of
the message. Currently message sources are tracked by
IP address, since that’s the only reliable source identity
available, but as DKIM signatures become more common,
they will become the preferred identity.

Domains are much better identity handles than IP addresses.
They are more stable and don’t change if a sender switches
ISPs, or if a change in circumstances requires new mail
hosts with new IP addresses. They also provide a more
useful granularity in situations where a group of senders
share a small set of IP addresses, such as at a shared web
host or email service provider. When a domain has been in
use for a while and is widely recognized as having a good
reputation, the domain’s value will increase and its owner
will be encouraged to be careful with its mail to preserve
that value.

Which signatures to use
A message may arrive with multiple signatures, some of
which validate and some of which don’t. Which signatures
should a receiver use? DKIM has not been around long
enough to provide an answer based on experience, but if
using it for whitelisting, the logical answer is to use the
valid signature with the best reputation.

There are both innocent and malicious reasons as to why a
message might have invalid signatures. Intermediate mail
hosts may mutate a message in ways that break a signature,
such as tidying up header lines, or it may have been sent
through a mailing list (a topic addressed later).

Creating a correct DKIM signature involves some tricky
programming, so a new signer may just have buggy code
that sometimes generates broken signatures. A test event in
late 2008, attended by many DKIM developers including
several of those who wrote RFC 4871 [1], found a lot of
obscure compatibility issues and generated 15 separate RFC
errata clarifying parts of the spec [2].

Just as bad guys add fake Received: headers to spam to
try to disguise the true source of their messages, they will
also likely add fake DKIM signatures. Trying to guess
the difference between innocent broken signatures and
forged signatures would be just as hard as any other kind of
heuristic spam detection, so recipients just ignore broken
signatures.

Having limited our attention to valid signatures, the other
part of the question is what to do if there are more than
one. Imagine a message that has two signatures, the fi rst of
which is from someone you trust and the second of which is
from someone you don’t. You can’t tell whether they were
both applied at the same time, or whether they were applied

sequentially as the message passed through different mail
systems. But if you really trust the fi rst signer only to sign
mail you want to receive, why does it matter if the message
passed through a bad neighbourhood on its way to you?
Since the signature validated, you know that the message
you got was the same one they signed, so the message
should be good.

VOUCH BY REFERENCE
While large ISPs can afford to maintain their own whitelists
and reputation databases, doing so is beyond the ability of
small operators. For many years, receivers have used shared
DNS blacklists of IP addresses that send unwanted mail
– examples include the Spamhaus SBL and XBL. Shared
blacklists of bad domains are unlikely to be useful, however,
since the supply of domains is unlimited and bad guys will
just discard any that appear on blacklists. On the other hand,
good domains are quite stable, so shared whitelists of good
domains will be of great use.

A small consortium called the Domain Assurance Council,
(of which I was one of the directors) has designed a shared
whitelisting system called Vouch by Reference (VBR) [3],
which is scheduled to be issued as an IETF standards track
RFC. VBR can be used with other authentication schemes
such as Sender-ID, but we designed it to work with DKIM.

VBR provides a very simple way to publish a list of
domains about which the publisher wants to make a positive
statement. There is no standard term for what VBR does,
but it is most often called certifi cation. If a sender expects
a certifi er to vouch for its mail, it puts a VBR-Info: header
into each message:
VBR-Info: md=bigbank.com; mc=transaction;
mv=certifi er.com:certifi er-b.com;

The md= domain must match the d= domain on a valid
DKIM signature on the message. The mc= fi eld is a
message category asserted by the sender. This can be
‘transaction’, ‘list’, or ‘all’, to say that the message is
related to a transaction, that it has been sent to a mailing
list, or that it is some other kind of mail. The mv= fi eld is a
list of domains of certifi ers that the sender expects to vouch
for them.

VBR publishers have a set of VBR records, one for each
domain they certify. Each VBR record is just a DNS TXT
record whose name is the certifi ed domain, the token
_vouch, and the voucher’s domain:
bigbank.com._vouch.certifi er.com TXT “transaction”

The content of the record is a space-separated list of words
from the set ‘transaction’, ‘list’, or ‘all’, to indicate that the
publisher vouches for transactional mail, list mail, or all
mail from that domain.

SPAM BULLETIN www.virusbtn.com

MAY 2009 S3

To check whether the sender of a message is certifi ed, a
receiver fi rst ensures that there is a valid DKIM signature
with an appropriate domain. Then it checks to see if any of
the certifi ers in the mv= list are certifi ers that it trusts.
(The mv= list is an optimization to avoid having to check
certifi ers that aren’t likely to have vouching data. Since bad
guys can set up their own certifi ers, receivers should only
check certifi ers they know.) Assuming there’s a good
signature and at least one known certifi er, then the receiver
looks up the VBR record, and if it exists and its content
agrees with the mc= category, the certifi er has vouched
for the sender. This sounds complex, but it is quite a fast
process since it involves at most a single DNS lookup
per publisher.

Some VBR publishers might want to assert that all the
mail from the domains in its list will be worthy of delivery,
but I expect VBR to be more useful to identify groups of
organizations of a particular type. For example, the FDIC
(the agency that insures banks in the United States) might
publish a list of the domains of its member banks and
vouch for their transactional mail. The FDIC can’t promise
that its banks won’t send you unwanted ads, since that’s
legal in the US, but they can at least assert that a signed
message from a domain in their list is really from the bank
and isn’t a phish.

Each receiving system can choose which VBR publisher to
use to whitelist signed mail by domain, just as it chooses
now which blacklists it trusts to block mail by IP. The
current version of VBR effectively communicates, one bit
per lookup, that a domain’s mail is good. We considered
more sophisticated VBR data such as reputation scores, but
decided that at this point we don’t understand reputation
systems well enough to design a scoring system that would
be broadly useful.

DKIM AND MAILING LISTS
One of the most confusing application areas for DKIM
is mailing lists. Some are ‘announcement’ lists, where all
the messages are sent by a single party, while others are
‘discussion’ lists, where members can send in messages
which are then passed on to the entire list. Each presents its
own challenges.

Announcement lists
Announcement lists, particularly those used for advertising,
are often outsourced to specialist companies known
as Email Service Providers (ESPs) which handle the
mechanics of list management and delivery issues.
Depending on the ESP, the mail may appear to come
directly from the ESP’s client, with the involvement of the

ESP visible only by looking at mail headers, or the ESP
may co-brand the mail with the client. Large clients tend to
do the former, small clients the latter.

In each case the ESP (usually with the client’s advice)
needs to decide what signatures to put on each message,
and for signatures in the client’s domain, how to manage
the signature keys. For the relatively invisible ESPs, the
signature is typically the client’s, which means that the
DKIM validation key has to be installed in the DNS under
the client’s domain. One way to do this would be for the
ESP to generate the key records and give them to the client
to install, but that doesn’t work well, since clients’ DNS
management skills vary widely, to put it politely. A more
workable approach is for the client to delegate part of their
DNS tree to the ESP.

As a real example, online travel agent Orbitz uses ESP
Responsys to manage its weekly online newsletter. The
company has delegated the subdomain my.orbitz.com to
Responsys’ name servers. The newsletters have a return
address of orbitz@my.orbitz.com, and the DKIM signature
d= domain is also my.orbitz.com. This allows Responsys
to handle all of the DKIM mechanics, while maintaining
orbitz.com as the responsible party. In particular, if
Orbitz were to switch ESPs, the company would take the
reputation of my.orbitz.com with it, since it ultimately
controls its delegation.

At the other end of the spectrum, Constant Contact is an
ESP that provides a service to tens of thousands of mostly
tiny businesses with small lists and small mailings. In their
case, it makes sense to sign mail with both the client’s
domain and constantcontact.com, since many individual
clients will have too small a mail volume to get much of
a reputation, while the ESP’s aggregate volume is large
enough and its list management is good enough that many
receivers would be willing to whitelist mail that it has
signed. (I don’t believe it has worked out the mechanics of
its client signing yet.)

Discussion lists

Discussion lists present a different set of identity issues,
since each message sent through such a list has a From:
address of the original contributor, even though the list sent
it to the list members. This has engendered a great deal of
confusion among DKIM implementers. Some lists make
few enough changes to the messages they pass through that
a DKIM signature on incoming messages might still be
valid when received by list members. DKIM includes a few
features for list mail, such as an optional message length
fi eld which is intended to let recipients skip the footers
that are added by list software. One theory says that list

SPAM BULLETIN www.virusbtn.com

MAY 2009S4

software should refrain from making any changes that will
break signatures, so recipients can apply their reputation
and fi ltering rules based on the original senders. This
seriously misunderstands the way that DKIM works (in
my opinion at least), and is unworkable with modern list
software anyway.

It is a rare list package that doesn’t break the signatures on
its messages. Something as simple as adding the list name
to the Subject line will do so, and modern list software often
rewrites list bodies, deleting attachments, turning HTML
into plain text and vice versa, and in some cases such as
Yahoo Groups, rewriting the HTML of the message to add a
message footer. Fortunately, there’s no need to preserve the
signatures on the messages, because for the recipients, the
signature and reputation that matters is that of the list, not of
the individual contributors.

When someone subscribes to a list, they do so
(presumably) because of the list’s contents, and they
depend on the list’s operator to control what mail the list
sends. It is perfectly reasonable for the list management
software to perform DKIM checks on its incoming mail as
part of the process of deciding what messages to accept,
but once a message is accepted, the list software puts
its own signature on its outgoing mail, and that’s what
the recipients use. Advocates of preserving incoming
signatures ask ‘what if bad guys send forged mail to lists?’,
to which the reasonable answer is that list managers will
deal with it, just as they’ve dealt with other kinds of abuse
over the past 40 years.

At the moment, most of this argument remains hypothetical
since relatively few lists do anything with DKIM at all, but
we are starting to see lists sign their outgoing mail with a
list signature, which should encourage recipients to use that
signature in their mail management.

ADSP AND PHISHING
Some domains are subject to heavy phishing attacks,
some of the most notable examples being PayPal and
eBay, and online greeting card sites like Blue Mountain
and American Greetings. In the former cases the phish is
trying to steal credentials, in the latter it is trying to trick
users into clicking a link that will install malware on their
PCs. If one knew that all of a domain’s legitimate mail
were signed, it would be possible to reject some phishes
by rejecting mail purporting to be from that domain but
without a signature.

ADSP, Author Domain Signing Practices, is an add-on to
DKIM that allows a domain to publish its practices and state
that it signs all mail that includes its domain on the From:
line (‘all’), or that it signs all of its mail and it considers

itself to be a phishing target so it wants you to throw away
unsigned mail (‘discardable’). ADSP is currently in the
midst of design arguments. These are partly about its basic
utility, since there’s little reason to believe that the domains
that would publish ‘discardable’ ADSP would all be or
even mostly be actual phish targets. The other arguments
are over whether the i= fi eld should be used in the signature
to force it to match the entire From: address rather than just
the domain.

Whether or not ADSP is published, there are a few heavily
phished domains that really do sign all of their mail,
paypal.com being the prime example. Recent versions of
the popular SpamAssassin fi ltering package have an ADSP
option that uses a short built-in list of phishing targets to
mark unsigned mail as spam.

Discarding unsigned mail from phishing targets is unlikely
to make much practical difference, since it’s easy to send
phishes without using the target’s own return address.
For example, with a From: line like the one below, many
popular mail programs will display the PayPal address
in the comment, rather than the actual rotten.biz return
address that could be signed with an ADSP-compatible
signature:
From: security@paypal.com <evil@rotten.biz>

Effective measures against phishing will depend on
highlighting the good mail, perhaps with an enhanced VBR
that shows a brand logo (e.g. ‘look for the golden dollar
sign’ on mail from an FDIC member bank) so people come
to understand that if it’s not highlighted, it’s not really from
a bank, or from eBay, or from the greeting card company.
DKIM can authenticate the real mail, but it’s just one part of
a total package.

SUMMARY
DKIM is an authentication system that provides an effective
way to assign a stable identity to mail messages beyond
ad-hoc identities based on IP addresses and message From:
addresses. It shows signs of wide adoption, already being
used by Yahoo, Google’s Gmail, and many email service
providers. In combination with whitelists, certifi cation and
reputation systems, it will be a key tool to separate mail that
recipients want from mail they don’t want.

REFERENCES
[1] http://tools.ietf.org/html/rfc4871.

[2] http://www.rfc-editor.org/errata_search.
php?rfc=4871.

[3] http://www.domain-assurance.org/
protocol-overview.phtml.

http://tools.ietf.org/html/rfc4871
http://www.rfc-editor.org/errata_search.php?rfc=4871
http://www.domain-assurance.org/protocol-overview.phtml

SPAM BULLETIN www.virusbtn.com

MAY 2009 S5

ANTI-SPAM COMPARATIVE
REVIEW MAY 2009
Martijn Grooten

If you happened to pass the Virus Bulletin offi ce during the
last few days of April, you would have been forgiven for
thinking you had heard the popping of champagne corks
in celebration of the completion of our fi rst comparative
anti-spam test. After months of consideration, internal and
external discussion, trials and retrials, we are very pleased
to be able to reveal the results of the fi rst test.

Still, much as we believe that our test is a good one, we
are the fi rst to admit that there is room for improvement –
indeed we are already working on a number of adjustments
to the test set-up. Moreover, there were a couple of minor
bugs that had to be fi xed during the course of the test, and it
is only fair that we confess to these issues.

One of the things that went wrong was that, one week into
the test, the primary DNS server failed. Most products use a
secondary DNS server as a backup solution, as do our own
servers, and it was for this reason that we did not notice the
problem until later on. The problem was brought to light
when one of the products on test showed a signifi cant drop
in performance – it turned out that the product in question
was only using the primary server for DNS lookups. While
it is generally assumed to be best practice for products to
use at least two DNS servers, this requirement had not been
stipulated prior to the start of the test – we intend to make
this a formal requirement for entrants in future tests. Of
course, we have also learned that it is important to monitor
the performance of the DNS servers closely.

A second bug was caused by a minor error in the script
used to relay email to the products. This resulted in some
of the emails being relayed incorrectly. Thankfully, a
comprehensive logging system meant that we were able to
identify these emails easily and, after fi xing the bug, remove
them from the test set.

THE TEST CORPUS
The test corpus consisted of all emails sent to the
virusbtn.com domain between the afternoon of 9 April and
the morning of 30 April 2009. The original idea was to let
products fi lter all email, regardless of whether they were
sent to an existing address, thus maximizing the amount of
spam seen by the products. However, not all of the products
could be confi gured in this way and as a result we decided
to remove from the corpus any messages that had been
sent to addresses that do not correspond to a genuine VB
mailbox or alias.

After removing these, as well as the misrelayed messages,
the test set consisted of 1,677 ham emails and 24,320 spam
emails. The ham set included personal and business email,
newsletters, mailing lists, genuine delivery failures and
automated notifi cations. The nature of some of these emails
(in particular automated notifi cations, newsletters and
mailing lists) makes them very diffi cult to distinguish from
spam. Nevertheless, they are all messages that the
virusbtn.com end-users genuinely want to receive, and
as such they should not be blocked by a spam fi lter. It
should be noted, however, that the false positive (FP) rates
recorded in this test may be higher than those reported
in other tests using ‘easier’ ham corpora (containing
fewer newsletters, mailing lists and so on). This is one of
the reasons why the absolute numbers shown in the test
results do not give a good picture in isolation; it is the
relative numbers compared to those of other products that
demonstrate how well a product performs.

To determine the ‘golden standard’ for each email, we fi rst
applied some ad hoc rules. For example, we determined that
any message using a foreign alphabet was almost certainly
spam. It should be noted that under the test regime, products
are not allowed to make use of such ad hoc rules based on
VB’s assumed email behaviour – and regular checks are
carried out to ensure this is not the case. Secondly, if all
products agreed on the classifi cation of an email they were
assumed to be correct; again, we performed regular checks
to ensure that nothing was misclassifi ed (even though the
comparative nature of the test would mean that a mistake
here would not disadvantage any product).

Finally, for all remaining emails, the golden standard was
decided upon by the end-user – the VB employee to whom
the email was sent (see p.2). To minimize the effect of
human error, all emails reported as false positives by at
least one of the products were double-checked to ensure the
correct classifi cation had been made by the end-user.

THE TEST SET-UP

A brief description of the test set-up follows below. Full
details of the set-up and the thought processes behind it can
be found in VB, January 2009 p.S1; VB, February 2009,
p.S1 and VB, March 2009, p.S6.

A gateway Mail Transfer Agent (MTA) running qpsmtpd
0.40 on a SuSE10 Linux machine was confi gured to accept
all email sent to the virusbtn.com domain. Upon accepting
an email, the MTA stored it in a database then relayed it
to all participating products in random order. The original
email was unchanged with two exceptions: fi rst, a
Received header was added to refl ect the fact that the
email had passed through our MTA. Secondly, if the email

COMPARATIVE REVIEW

http://www.virusbtn.com/pdf/magazine/2009/200901.pdf
http://www.virusbtn.com/pdf/magazine/2009/200902.pdf
http://www.virusbtn.com/pdf/magazine/2009/200903.pdf
http://www.virusbtn.com/pdf/magazine/2009/200902.pdf

SPAM BULLETIN www.virusbtn.com

MAY 2009S6

header lacked a Message ID, one was added using the
mail.virusbtn.com domain.

All of the products participating in the test were confi gured to
relay the fi ltered email to a back-end MTA. Where possible,
they were confi gured to relay spam as well, and to mark spam
using a special header. Using this header in combination
with the IP address on which the product was located, the
back-end MTA was able to link a fi ltered email with both a
product and an email that was already in the database.

Two of the products, ClamAV and SpamAssassin, were
not installed on a server; instead they were installed on
the same machine that runs the MTA. For performance
reasons, emails were not sent through these two products
immediately after they were received. Instead, a script
checked every 10 minutes for new messages then ran them
through both fi lters.

BitDefender Security for Mail Servers 3.0.2
SC rate: 84.20%

FP rate: 1.49%

FP of total mail corpus: 0.096%

BitDefender is no stranger to Virus Bulletin,
since the Romanian vendor is a regular
participant in the VB100 anti-malware
reviews. The company has also been active
in the anti-spam business for quite some time
and was one of the fi rst to submit a product
for this test.

BitDefender Security for Mail Servers comes
in various fl avours for different operating systems; the
version we tested ran on a new SuSE10 Linux installation as
an extension (milter) to the Postfi x MTA. Installation of the
product was straightforward and consisted of downloading
an executable .rpm fi le and running it. The product can be
confi gured using the command line, which no doubt will
please many experienced Linux administrators, but those
who prefer a graphical interface will also fi nd themselves at
ease with the web interface.

BitDefender’s false positive rate was lower than that of any
of its commercial competitors. The spam catch (SC) rate,
however, left some room for improvement. The low spam
catch score is partly explained by the product’s use of only
one DNS server – something the developers have since
fi xed. Indeed, during the period in which our primary DNS
server was down, the product’s performance dropped about
six per cent. Despite this, the product’s performance was
more than decent and, while working on improvements to
the product for the next test, its developers will be able to
revel in the knowledge that they have already achieved a
VBSpam Gold award.

ClamAV using Sanesecurity signatures
SC rate: 27.63%

FP rate: 0.00%

FP of total mail corpus: 0.00%

ClamAV is the biggest and best-known open source
anti-malware product and is developed by a large group
of volunteers from all over the world. While many
anti-malware reviews suggest that ClamAV’s performance
falls short of that of its commercial competitors, it still
boasts many happy users. In particular, many of them use
the product on mail servers to check incoming and outgoing
email for malware. However, it can also be run as a spam
fi lter, and as such it was submitted to the test. The scanning
rules were based on signatures provided by a group of
volunteers operating under the name Sanesecurity.

We had been warned that the spam catch rate would be far
from that of dedicated anti-spam products and indeed, we
found that the product blocked barely 28% of all spam.
However, that does not render the product worthless. The
fact that, even in our diffi cult ham corpus, no legitimate
message was blocked incorrectly indicates that the product
could act as a very good fi rst-layer fi lter, working in
conjunction with a number of others. Moreover, the nature
of signatures is such that the product’s performance might
change signifi cantly if it were to see a different email
corpus (indeed, we saw great variation in its day-to-day
performance), and I will be very interested to see how it
performs in the next test, using a larger spam corpus.

MessageStream (Giacom)
SC rate: 96.50%

FP rate: 3.16%

FP of total mail corpus: 0.204%

Giacom’s MessageStream is a hosted
solution that takes the spam fi ltering
away from the customer’s mail server:
email is passed through and fi ltered by
MessageStream’s servers, where spam
is quarantined and only presumed ham
messages are sent back to the customer’s
mail server.

An attractive and intuitive web interface is available for
the confi guration of product settings as well as for the
whitelisting of email addresses or full domains on either a
global or personal level. I was charmed by the information
that is provided on why emails have been marked as spam
– enabling users to modify fi lter rules even if they aren’t
experts on spam fi ltering. I was less excited by the fact that
there is no facility for an administrator to search all email

M
ay

 2
00

9

M
ay

 2
00

9

SPAM BULLETIN www.virusbtn.com

MAY 2009 S7

(sent to all addresses) simultaneously, but end-users’ privacy
is more important than saving the system administrator a
few minutes’ work.

On the company’s website, the product is claimed to block
at least 97% of spam and our test results indicate a similar
score – far above the average. Unfortunately, there were a
few false positives, but judging by the spam scores for the
emails in question, most of them could probably have been
avoided (albeit at the cost of a lower spam catch rate) by
tuning down the spam fi lter slightly. A VBSpam Gold award
is thus very well deserved.

M+Guardian (Messaging Architects)
SC rate: 94.83%

FP rate: 2.27%

FP of total mail corpus: 0.146%

For those companies who want to keep their
anti-spam solutions in house, yet do not want
to confi gure a server themselves, a hardware
appliance might be the right choice. One
of the many available on the market is
M+Guardian, a product from Canadian
company Messaging Architects. The
appliance can be stored in a server room like
any other server, with the difference that you don’t have to
worry about installing and maintaining an operating system.

Like most products, M+Guardian comes with an easy-
to-use web interface for product confi guration and the
monitoring of email fl ow. I liked the fact that there was an
option to send a warning once the number of spam emails
received by a single user has exceeded a certain threshold
– thus reminding end-users that using one’s address sensibly
is the fi rst step to minimizing spam.

While the product did generate some false positives, the
number was lower than average. Add to that a very high
spam catch rate and M+Guardian’s developers can be proud
to be the fi rst to achieve a VBSpam Platinum award.

SpamAssassin
SC rate: 61.41%

FP rate: 1.07%

FP of total mail corpus: 0.069%

With a history dating back to 1997, SpamAssassin is the
Methuselah among anti-spam products. The product is far
from retirement though, and it is used as heavily as ever and
still worked on by a large group of volunteers. Operating
under an Apache License 2.0, the product is free and open
source. For this test, we used version 3.1.8 on SuSE10
Linux, which was updated every hour.

I do not believe that using free anti-spam software is
necessarily a better idea than using a proprietary product,
nor do I think that the performance of a free product is
bound to be worse than that of a commercial product.
However, the vendors of commercial products need good
reason to expect customers to pay for their wares if decent
free alternatives are available – so it will be interesting to
see how performances compare.

Unfortunately, SpamAssassin’s spam catch rate was a
disappointingly low 61% – which was barely compensated
for by a very low false positive rate. Undoubtedly
SpamAssassin’s developers will be as curious as I am as
to whether the low spam catch rate was caused by loose
fi lter rules that need tightening, or whether other factors
have also played a role.

Webroot E-Mail Security SaaS
SC rate: 97.57%

FP rate: 26.12%

FP of total mail corpus: 1.685%

Webroot is another vendor that will be familiar to VB
readers from its participation in VB100 tests, and was
another that submitted a hosted solution. Like most hosted
solutions, Webroot does a lot more than simply fi ltering
spam – other functions include the provision of business
continuity and scanning of email for pornographic images.
In an era in which more and more spam is sent from
compromised legitimate machines, it is also reassuring to
see that the product can be confi gured to scan outbound
messages.

A decent web interface gives system administrators a good
overview of current spam and virus threats, as well as an
indication of which users are most affected. Unfortunately,
due to the way in which the product was set up for this test,
few of the options in the interface could be tried out.

In fact, Webroot’s developers are already working on
fi nding a way to make the product fi t into the test better:
a false positive rate of over 25% of all ham messages is
almost certainly a sign of product misconfi guration. With

M
ay

 2
00

9

FP rate

S
C

 ra
te

SPAM BULLETIN www.virusbtn.com

MAY 2009S8

such a high false positive rate no certifi cation was awarded
this time around, but the developers will no doubt be
working hard to achieve signifi cantly better results in the
next test.

AWARDS
It cannot be emphasized enough that, in our tests, it is
not so much the absolute performance of a product that
matters, but the relative performance compared to that
of its competitors. Products will therefore not achieve
certifi cation by blocking ‘x%’ of all spam or generating less
than ‘y%’ false positives. The best-performing products in
each test are awarded with one of three certifi cations:

• VBSpam Platinum for products with a spam catch rate
twice as high and a false positive rate twice as low as
the average in the test

• VBSpam Gold for products with a spam catch rate at
least as high and a false positive rate at least as low as
the average in the test

• VBSpam Silver for products whose spam catch rate and
false positive rates are no more than 50% worse than
the average in the test.

In this test, based on an average spam catch rate of 77.02%
and an average false positive rate of 5.68%, the benchmarks
were as follows:

Platinum: SC 88.51%; FP 2.84%

Gold: SC 77.02%; FP 5.68%

Silver: SC 65.53%; FP 8.52%

One does not need a qualifi cation in statistics to understand
that these averages have been skewed by the performances
of ClamAV (which had a very low spam catch rate) and
Webroot (which had a very high false positive rate). It would
thus be tempting to ignore these products when computing
the average score. However, we have decided against this

based on the fact that we think it is important to stick to
the same rules for the duration of a test, rather than change
them halfway through.

We are looking into ways in which any future ‘outliers’
can be excluded from the calculation of averages using
non-arbitrary methods.

CONCLUSIONS AND IMPROVEMENTS
If there were two changes I could make to improve the test
they would be:

• The inclusion of more products in the test.

• The use of a larger and more varied spam corpus.

Happily, thanks to a great deal of interest from vendors, we
anticipate that the number of products participating in the
next test (due to be run in June) will reach double fi gures.

To increase the size of the spam corpus and the variation
within it, we intend to work together with Project Honeypot
– an initiative that has generated the largest and most varied
spam trap in the world. The brains behind Project Honeypot
have kindly offered to relay some of the millions of spam
messages they receive to our servers, so that they can be
used in our test in real time. This will signifi cantly increase
the robustness of the test.

Overall, despite a couple of bugs the fi rst ‘live’ anti-spam
test has been a success, with some encouraging results for
most of the participants and a little more work to be done
by some of the others. I look forward to the next test to see
the effects of a larger fi eld of competition and a larger spam
corpus.

Developers interested in submitting products for the next
test should contact martijn.grooten@virusbtn.com. The next
test will be run during June, with the deadline for product
submissions towards the end of May.

True
negatives

False
positives

True
positives

False
negatives

SC rate FP rate FP rate as percentage
of total mail corpus

BitDefender Security for
Mail Servers

1,652 25 20,478 3,842 84.20% 1.49% 0.096%

ClamAV signatures 1,677 0 6,719 17,601 27.63% 0.00% 0.000%

Giacom 1,624 53 23,470 850 96.50% 3.16% 0.204%

M+Guardian 1,639 38 23,062 1,258 94.83% 2.27% 0.146%

SpamAssassin 1,659 18 14,934 9,386 61.41% 1.07% 0.069%

Webroot E-Mail Security
SaaS

1,239 438 23,729 591 97.57% 26.12% 1.685%

Average 77.02% 5.68% 0.367%

mailto:martijn.grooten@virusbtn.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

