
MAY 2008

CONTENTS IN THIS ISSUE

IS
S

N
 1

74
9-

70
27

Fighting malware and spam

2 COMMENT

 Online banking call to arms

3 NEWS

 Malware gets terms of use

 Grand theft personal information

3 VIRUS PREVALENCE TABLE

 FEATURES

4 Algorithms for grouping similar samples in
 malware analysis

8 Metamorphic authorship recognition using
 Markov models

12 OPINION

 Blended malware defence

14 PRODUCT REVIEW

 eEye Digital Security Blink Professional 4.0

20 END NOTES & NEWS

GROUP MENTALITY
Malware researchers are frequently faced with
huge collections of fi les that must be analysed
to determine whether or not they are malware.
Grouping the fi les according to their binary
similarity can save time and effort. Víctor Álvarez
discusses the algorithms that can be used to give the
malware researcher a helping hand.
page 4

BLINKING GOOD
John Hawes takes an
in-depth look at the
security features of
eEye Digital Security’s
Blink Professional and
fi nds a solid package
with impressive breadth
of power.
page 14

This month: anti-spam news and events, and Sorin
Mustaca describes a method for delivering protection
against phishing websites.

2 MAY 2008

COMMENT

Editor: Helen Martin

Technical Consultant: John Hawes

Technical Editor: Morton Swimmer

Consulting Editors:

Nick FitzGerald, Independent consultant, NZ

Ian Whalley, IBM Research, USA

Richard Ford, Florida Institute of Technology, USA

ONLINE BANKING CALL TO ARMS
According to a recent report released by UK payments
industry association APACS, the rate of phishing attacks
in the UK has increased dramatically over the last 12
months, with the number of incidents reported during the
fi rst quarter of 2008 up 200 per cent on the same period
last year.

At least some degree of that increase may be due to
an increased awareness among the public of phishing
attacks and how to spot them (and consequently report
them) – a theory supported by the fact that the number of
people either deleting or taking no action when receiving
a phishing email increased from 75 per cent in 2006 to
82 per cent in 2007 and the fact that losses from online
banking fraud decreased by a third from £33.5m in 2006
to £22.6m in 2007.

However, it is clear that phishing is still big business
– and users of online banking systems are advised by
APACS that they should ‘just remember that your bank
will never send you emails asking you to disclose PIN
numbers, login details or complete passwords’.

But are the banks themselves doing enough to help their
customers steer clear of online fraud? A new banking
code released by the British Bankers Association (BBA)
last month included advice for customers on how to
avoid falling victim to identity theft and online fraud. The
suggestions set forth constituted sound, well-considered
advice both in terms of physical security (e.g. don’t keep

your cheque book and cards in the same place; shred
any printed information about your accounts; notify the
bank if an expected statement or letter is not received)
and online security (e.g. use up-to-date anti-virus and
anti-spyware products and a personal fi rewall; never
follow a link from an email directly to a bank or building
society; treat emails claiming to be from your bank or
building society with caution).

Much was made in the media of a cautionary note
contained in the code, which warned that if customers
fail to follow this set of guidelines to a reasonable degree
banks may hold the customer responsible for any losses
that can be deemed to have resulted from such lapses in
security.

In practice, of course, it is unlikely that failure to follow
the advice to the letter will result in customers being asked
to foot the bill for losses – the burden of proof lies with
the bank to demonstrate that the customer has behaved
unreasonably or irresponsibly and it is unlikely that banks
will invest the resources necessary to prove in individual
cases that computers are not adequately secured. There is
a fi ne line between scaremongering and giving users an
incentive to take security more seriously, and the BBA
code treads the line carefully – but in order for this ruling
to have a positive effect it must be backed up with readily
available information on what adequate protection looks
like and how the average user can achieve it.

What was disappointing about the new banking code,
and indeed remains disappointing in the banking and
fi nancial services industry as a whole, is that, while users
are urged to ‘always be suspicious of unsolicited emails
that claim to be from your bank’, banking organizations
have failed to pledge that they will stop sending
emails that add to the confusion. With phishing emails
becoming increasingly stealthy – some even including
warnings about the dangers of phishing – emails that
are genuinely sent by banks (particularly those that
contain links to the banking sites) compound the issue.
A concerted and global effort to address the content and
style of emails sent by banking organizations would go a
long way towards helping reduce confusion.

VB has invited a panel of security experts from the
banking and fi nancial services sector to speak at
VB2008 on the efforts their organizations are making
to counter online fraud – it is hoped that such an open
forum will facilitate the exchange of ideas and sharing
of knowledge between the banking and anti-malware
communities. VB2008 takes place 1–3 October 2008 in
Ottawa, Canada. For details of the rest of the programme
and online registration see http://www.virusbtn.com/
conference/vb2008.

‘Banking organizations
have failed to pledge
that they will stop
sending emails that
add to the confusion.’
Helen Martin, Virus Bulletin

http://www.virusbtn.com/conference/vb2008/index

3MAY 2008

VIRUS BULLETIN www.virusbtn.com

NEWS
MALWARE GETS TERMS OF USE

Concerned about the trustworthiness of their customers,
creators of malicious software have started taking the
precaution of including licence agreements in the packages
they distribute in the underground.

According to researchers at Symantec, a EULA contained
in the Infostealer.Banker.C or ‘Zeus’ malware package
specifi es that the purchaser of the malware may not
distribute the product for any business or commercial
purposes, may not disassemble or study the binary code of
the bot builder, may not use the control panel as a means
to control other botnets, must not send any portion of the
product deliberately to anti-virus companies, and must
agree to pay for any update to the product other than the
fi xing of programming errors.

In an attempt to make sure users abide by these rules, a
warning note is added which advises the user that, should
they violate the terms of the agreement and be found out,
then not only will they lose any technical support for the
product, but the binary code of their bot will immediately be
sent to anti-virus companies.

The fact that the package was being traded freely in
underground forums shortly after it was released suggests that
it is as hard to enforce the terms of a licence agreement for
malware as it is for legitimate software – or maybe that the
user of a malicious software package is as unlikely to read a
EULA as users of legitimate software.

GRAND THEFT PERSONAL INFORMATION

Large volumes of spam were spotted late last month
coinciding with the release of the latest version of the
computer game Grand Theft Auto. Taking advantage of
the popularity of the game, spammers sent messages
offering free entry to a prize draw to win a PlayStation 3
loaded with the new version of the game. Of course, the
prize draw did not really exist and the spammed emails
contained various malicious programs designed to infect
the recipients’ computers and steal personal information.

Grand Theft Auto IV was released to a frenzied reception
last month – UK newspapers reported at least two instances
of violence having fl ared up among queues of customers
waiting outside high-street shops to get their hands on
a copy. With such an eagerly anticipated product – and
retailers unable in many instances to fulfi l demand – the
opportunity was ripe for scammers to exploit. According to
UK-based mail fi ltering company ClearMyMail.com, more
than half of the spam it blocked on the day of the game’s
release related to Grand Theft Auto, with the majority of
those messages containing viruses and spyware.

Prevalence Table – March 2008

Malware Type %

Cutwail/Pandex/Pushdo Trojan 48.29%

NetSky Worm 22.16%

OnlineGames Trojan 10.20%

Mytob Worm 8.41%

Virut Virus 4.36%

Mydoom Worm 4.35%

Bagle Worm 3.65%

Zafi Worm 2.27%

Agent Trojan 1.73%

Small Trojan 1.50%

Stration/Warezov Worm 1.06%

Grew Worm 1.03%

Sality Virus 0.60%

Zlob/Tibs Trojan 0.50%

Mywife/Nyxem Worm 0.49%

Bugbear Worm 0.23%

Grum Worm 0.20%

VB Worm 0.17%

Klez Worm 0.14%

PrettyPark Worm 0.12%

Bagz Worm 0.12%

Delf Trojan 0.11%

Nuwar/Peacomm/Zhelatin Trojan 0.10%

Doombot Worm 0.09%

Nahata Worm 0.09%

Sdbot Worm 0.08%

Areses/Scano Worm 0.07%

Fleming Worm 0.07%

Autorun Worm 0.06%

Lineage/Magania Trojan 0.06%

Brontok/Rontokbro Worm 0.05%

Alman Worm 0.05%

Parite Worm 0.05%

Others[1] 0.54%

Total 100.00%

[1]Readers are reminded that a complete listing is posted at
http://www.virusbtn.com/Prevalence/.

http://www.virusbtn.com/resources/malwareDirectory/prevalence/index

VIRUS BULLETIN www.virusbtn.com

4 MAY 2008

ALGORITHMS FOR GROUPING
SIMILAR SAMPLES IN MALWARE
ANALYSIS
Víctor M. Álvarez
PandaLabs, Spain

Malware researchers often need to group large sets of
fi les according to their binary similarity. For instance,
they are frequently faced with huge collections of fi les
that must be analysed to determine whether or not they
are malware. Such collections generally contain fi les
which are very similar, but which do not match exactly,
while many other fi les bear no relation to the rest. In such
a situation, grouping the fi les according to their binary
similarity can save a lot of time and effort. In this article
we will discuss some algorithms that can be used for this
purpose.

MEASURING FILE SIMILARITY

The fi rst thing we need to do before we can implement an
algorithm for grouping similar fi les is to defi ne a way to
measure the grade of similarity between two given fi les.
From now on, we will refer to this grade of similarity
as the distance between the two fi les. The more similar
the fi les, the smaller the distance between them and
vice-versa.

A good way to measure the distance between two fi les
is to calculate the length of their longest common
subsequence.

Let A be a sequence of symbols of length m, then a
subsequence of A is another sequence, A ,́ of length n ≤ m
that can be obtained by removing zero or more symbols
from A. For example, abce, bcde, bad, and ade are all
subsequences of abacde. Obviously, the longest common
subsequence (LCS) of A and B is the longest subsequence
of A that is also a sub-sequence of B.

Although the length of the longest common subsequence
(LLCS) is theoretically a good measure of fi le similarity,
it has a major drawback in practice: its time complexity.
Several algorithms for solving the LCS and LLCS
problems have been proposed by different authors,
including Hirschberg [1], Hunt and Szymanski [2], Kuo
and Cross [3] and some others, but all of them run in
quadratic time. Taking into account the large number of
fi le comparisons needed to cluster a large set of fi les, it
is obvious that a linear time algorithm for calculating
fi le distances is preferred, even at the expense of losing
accuracy in the measurement.

That’s when delta algorithms come into play. The purpose
of delta algorithms is to receive two fi les and generate a
set of instructions that can be used to convert one of the
fi les into the other. In other words, given the reference fi le
A and the target fi le B, a delta algorithm is composed of
two functions ∆g and ∆p such that:

∆g (A,B) = C and ∆p (A,C) = B

The function ∆g generates a set of instructions C that
can be used in conjunction with A to obtain B using ∆p.
This kind of algorithm is widely used for performing
incremental data backups, distributing software updates,
and many more situations where changes must be made to
existing data and it is more effi cient to send or store just
the difference between versions than the whole new set
of data.

Delta algorithms are strongly related to the LCS problem.
The relationship becomes more evident when considering
that the LCS and the string-to-string correction problem
(STSC) are dual (i.e. the two problems are complementary,
a solution to one of them determines a solution to the
other).

The STSC problem consists of fi nding the minimum
number of insertions and deletions necessary to convert
a given sequence of symbols into another. In fact, some
delta algorithms rely on solving the LCS/STSC problem to
fi nd the shortest possible delta fi le, but many of them don’t
pretend to fi nd the optimal set of instructions, they just try
to fi nd one that is good enough, sacrifi cing solution quality
in favour of execution speed.

The algorithm we will present here to calculate the
distance between two fi les is inspired by xdelta [4]. Both
the reference fi le F

1
and the target fi le F

2
 are scanned

simultaneously with an offset of W bytes. The scanning of
F

2
 starts when the fi rst W bytes of F

1
 have been scanned

(in our tests we set W to 64 KB with good results).

On each increment of the current position of F
1
 four bytes

are read from the fi le, passed through a hash function
H, and the result is used as an index on the hash table T
where the current position of F

1
 is stored. The hash table

does not chain hash collisions; when a collision occurs the
previous value is overwritten.

When scanning F
2
 four bytes are also read on each

iteration. The hash table is used to fi nd out if there is
a match in F

1
 for these four bytes. If a match is found,

the current position of F
2
 advances until the end of the

matching block – this would generate a copy instruction in
the output of the xdelta algorithm. If there is no match the
current position of F

2
 is incremented. This would generate

an insert instruction. The distance d between the two fi les

FEATURE 1

VIRUS BULLETIN www.virusbtn.com

5MAY 2008

is based on the number of instructions c that would be
generated, and the size of both fi les s

1
 and s

2
, following the

expression:

It must be said that this distance is not symmetrical (i.e.
d(A,B) ≠ d(B,A)), although it tends to be more symmetrical
when the fi les are more similar. For fi les with very
dissimilar sizes, but which are still similar in some way
(consider, for example, the case of comparing a fi le with a
truncated version of itself), this asymmetry could lead to
very different results depending on the order of comparison.
To avoid this discrepancy, we decided that the biggest fi le
would always be the reference fi le F

1
, and the smallest

one the target fi le F
2
. This is because the delta algorithm

generates fewer instructions when trying to convert a large
fi le into a smaller one than the opposite way round.

Here is the algorithm for calculating the number of
instructions c in more detail:

(1) while F
1
 [i] = F

2
 [i] do i ← i + 1

(2) if (i = s
2
) return 0

(3) for i ≤ j < i + W do

 x ← four bytes of F
1
 at offset j

 T[H(x)] ← j

 j ← j + 1

(4) c ← c + 1

 x ← four bytes of F
2
 at offset i

 k ← T[H(x)]

 if (k is null)

 x ← four bytes of F
1
 at offset j

 T[H(x)] ← j

 j ← j + 1

 i ← i + 1

 else while (F
1
 [k] = F

2
 [i]) do

 x ← four bytes of F
1
 at offset j

 T[H(x)] ← j

 j ← j + 1

 i ← i + 1

 k ← k + 1

(5) repeat (4) until end of F
2

(6) return c

GROUPING SIMILAR FILES
Once we have defi ned a metric to measure fi le similarity,
the next part of our problem is to fi nd a method for
grouping similar fi les together. This is when clustering
algorithms become helpful. In general terms, clustering
algorithms are aimed at partitioning a set of objects into
subsets according to their proximity, as defi ned by some
distance measure.

An incredible number of clustering algorithms have
been developed over the years for different purposes and
employing a variety of techniques. Terms like ‘K-means’,
‘fuzzy C-means’ and ‘hierarchical clustering’ populate
hundreds of academic and research papers across a broad
spectrum of fi elds, and there are plenty of choices for a
clustering algorithm. However, the characteristics of the
problem we wanted to solve meant that it was not diffi cult
to choose an appropriate algorithm for our needs.

From the very beginning it was obvious that algorithms
like K-means, which rely on fi nding a centroid for each
cluster, were not suitable in this case. A centroid is
nothing more than a central point for a cluster or group
of objects, which is not necessarily one of the objects.
Depending on the nature of the objects we want to cluster,
establishing the centroid for a cluster could be an easy or
a very diffi cult task. Calculating the centroid of n points
in a Euclidean space is straightforward, but establishing
a centroid for a group of fi les is a whole new problem on
its own. K-medoids, another clustering algorithm very
similar to K-means, does not have this problem because the
central point for each cluster (or medoid) is not external
to the objects, but one of the objects itself. However, both
algorithms need to know in advance the number of clusters
into which the data will be partitioned – a requirement that
makes these algorithms unsuitable for our purposes.

On the other hand, hierarchical clustering algorithms
seemed very appropriate for the task. There are different
variants of hierarchical clustering algorithms, but we will
concentrate on agglomerative single linkage clustering.
This algorithm starts by placing each object (a fi le in our
case) in a separate cluster. At each stage of the algorithm
the two closest clusters are merged together until a
certain number of clusters is reached, or until the distance
between the two closest clusters exceeds a predefi ned
value. The distance d between two clusters C

n
 and C

m
 is

defi ned as the minimum distance between any object from
C

n
 and any object from C

m
.

In a more formal way:

d(C
n
,C

m
) = min { d(x,y) | x ∈ C

n
, y ∈ C

m
}

In order to see the algorithm in a more detailed way let’s
assume that we have N fi les F

n
 (1 ≤ n ≤ N) to cluster, C

d =
| s

1
– s

2
|+ 2c

s
1
+ s

2

VIRUS BULLETIN www.virusbtn.com

6 MAY 2008

denotes a cluster, and d
f
 is the minimum distance allowed

between any two clusters of the fi nal result, then:

(1) Construct matrix D of dimensions N × N such that:

 D
nm

= d(C
n
,C

m
) = d(F

n
,F

m
) n ≤ N, m < n

 (as d(F
n
,F

m
) = d(F

m
,F

n
), D is symmetrical and

 only the lower half is used)

(2) Find clusters C
x
 and C

y
 such that:

 d(C
x
,C

y
) = min { d(C

n
,C

m
) | n ≤ N, m < n }

(3) Merge C
x
 and C

y
 into a single cluster C

x
 ∪ C

y
 and

reconstruct D by removing the two rows and columns
that correspond to C

x
 and C

y
and adding a new row

and a new column for the newly created C
x
 ∪ C

y
.

Now N ← N –1 and the distance from any existing
cluster C

p
 to the new cluster C

x
 ∪ C

y
 is given by:

 d(C
p
, C

x
 ∪ C

y
) = min { d(C

p
,C

x
), d(C

p
,C

y
) }

(4) Repeat from step (2) while there is more than one
cluster and the distance between the two closest
clusters does not exceed d

f
.

Successive steps of the algorithm applied to a set of fi ve
fi les are shown in the tables below. The minimum distance
in the fi rst matrix is between clusters C

2
 and C

4
. The

corresponding columns and rows (in red) are deleted from
the fi rst matrix and a new row and column (in green) are
added to construct the second. The algorithm continues until
the distance between the two closest clusters is greater than
d

f
 = 0.25.

C
1

C
2

C
3

C
4

C
5

C
1
 = {F

1
} 0

C
2
 = {F

2
} 0.35 0

C
3
 = {F

3
} 0.19 0.32 0

C
4
 = {F

4
} 0.29 0.12 0.31 0

C
5
 = {F

5
} 0.34 0.18 0.28 0.33 0

C
1

C
3

C
5

C
2∪4

C
1
 = {F

1
} 0

C
3
 = {F

3
} 0.19 0

C
5
 = {F

5
} 0.34 0.28 0

C
2∪4

 = {F
2
,F

4
} 0.29 0.31 0.18 0

C
1

C
3

C
2∪4∪5

C1 = {F1} 0

C3 = {F3} 0.19 0

C2∪4∪5 = {F2,F4,F5} 0.29 0.28 0

C
2∪4∪5

C
1∪3

C
2∪4∪5

 = {F
2
,F

4
,F

5
} 0

C
1∪3

 = {F
1
,F

3
} 0.28 0

The result of this clustering algorithm is a hierarchical
representation of similarity between the fi les, which is
usually called a dendrogram. In a dendrogram each leaf of
the tree is an element of the set being clustered, and each
node in the middle of the tree represents an association
between two objects, one cluster and one object, or two
clusters. The picture below, showing the dendrogram
corresponding to our previous example with fi ve fi les,
speaks for itself.

VIRUS BULLETIN www.virusbtn.com

7MAY 2008

Notice that as the algorithm is interrupted when the
distance between the two closest clusters is greater than
d

f
, a set of sub-trees is obtained instead of a single tree.

All elements that are leaves of the same sub-tree are also
members of the same cluster in the fi nal result of the
algorithm.

OPTIMIZATION

File clustering is a costly process. The number of fi le
comparisons that must be done to fi ll the initial distance
matrix for the clustering algorithm is N × (N – 1) / 2.
As the number of fi les grows linearly, the number of
comparisons grows quadratically. The fi le comparison
algorithm is not very costly in itself, it only depends
linearly on the size of the fi les being compared, but it
requires the content of both fi les to be read completely,
incurring a large number of I/O disk operations with the
obvious performance degradation that such operations
impose. For this reason it is necessary to avoid unwanted
fi le comparisons as much as possible.

A good heuristic is to avoid comparing fi les whose size
is quite different. As a rule of thumb it can be said that a
pair of fi les with sizes s

1
 and s

2
 should be compared only if

they satisfy:

Here, r is a certain adjustable ratio that can be raised
or lowered depending on the number of fi les, the
characteristics of the hardware, and other factors. If the
sizes do not satisfy the expression above, they are not
compared and the distance between them is considered to
be infi nite.

Another possible optimization consists of aborting
the distance computation when it is about to exceed a
maximum value. As mentioned above, the clustering
algorithm stops when the minimum distance between all
existing clusters is greater than a given value we called
d

f
. Therefore, distances greater than d

f
 do not infl uence

the fi nal result – their values are irrelevant as long as they
are greater than d

f
. But the distance between two clusters

is by defi nition the distance of their nearest elements,
which means that it is also the distance between some
pair of fi les in the set. When calculating such distances,
the process can be interrupted at the very moment it
exceeds d

f
. This saves a considerable amount of fi le read

operations, improving the general performance of the
algorithm.

| s
1
 – s

2
|

 s
1
 + s

2

< r

CONCLUSIONS

This article is based on well-known and studied algorithms;
there is nothing genuinely new in what has been described
here. However, I hope it may have served to show that
mixing together existing algorithms and techniques in a
creative way can sometimes help to improve the tools we
have available to make our job easier.

I also hope this article may be relevant beyond the anti-virus
industry, because grouping fi les according to their binary
similarity has a broader range of applications than just
sample categorization in malware analysis.

REFERENCES

[1] Hirschberg, D.S. A linear space algorithm for
computing maximal common subsequences.
Communications of the ACM, volume 18, no. 6
(1975) pp.341–343.

[2] Hunt, J.; Szymanski, T.G. A fast algorithm for
computing longest common subsequences.
Communications of the ACM, volume 20, no. 5
(1977) pp.350–353.

[3] Kuo, S.; Cross, G.R. An improved algorithm to
fi nd the length of the longest common subsequence
of two strings, ACM SIGIR Forum, volume 23,
no. 3–4 (1989) pp.89–99.

[4] MacDonald, J.P. Versioned fi le archiving,
compression, and distribution. University of
California at Berkeley (1999). See
http://citeseer.ist.psu.edu/macdonald99
versioned.html.

[5] Burns, R.C.; Long, D.D.E. A linear time, constant
space differencing algorithm. Proceedings of
the International Performance, Computing and
Communications Conference (IPCCC), IEEE,
(1997).

[6] Hunt, J.J.; Vo, K-P.; Tichy, W.F. Delta algorithms:
an empirical analysis. ACM Transactions on
Software Engineering and Methodology, volume 7,
no. 2 (1998) pp.192–214.

[7] Jain, A.K.; Topchy, A.; Law, M.H.C.; Buhmann,
J.M. Landscape of clustering algorithms.
Proceedings of the 17th International Conference
on Pattern Recognition, 2004, volume 1, issue
23–26 (2004) pp.260–263.

[8] Jain, A.K.; Murty, N.M.; Flynn, P.J. Data
clustering: a review. ACM Computing Surveys,
volume 31, issue 3 (1999) pp.264–323.

http://citeseer.ist.psu.edu/macdonald99versioned.html

VIRUS BULLETIN www.virusbtn.com

8 MAY 2008

METAMORPHIC AUTHORSHIP
RECOGNITION USING MARKOV
MODELS
Mohamed R. Chouchane, Andrew Walenstein,
Arun Lakhotia
University of Louisiana at Lafayette, USA

Automated code morphing techniques can make malware
recognition diffi cult [1]. Morphed malware can be detected
by recognizing invariant runtime behaviours, or by
fi rst normalizing the programs to remove the variations
introduced by the morphing engine [2]. While effective,
these methods are computationally expensive to apply to
every object scanned.

We propose a fast method that can be used to decide
whether a binary might be a variant of a known item
of metamorphic malware. The key idea is to treat the
morphing engine as an author, and then use its morphing
characteristics to decide whether a suspect program is a
variant of the original, or ‘Eve’ version.

INTRODUCTION

Since the time of the Morris worm it has been suggested
that it may be possible to trace a program to its authors
by noting features of the program that are likely to fi t the
output profi le of what those authors may generate [3].
But morphed programs are the output of a certain kind of
‘author’ – the morphing engine. This observation leads
us to ask: is it possible to recognize morphed malware
by virtue of recognizing its author in the form of the
morphing engine? We propose a method for recognizing
metamorphic malware – which may generate successive
transformations of itself – using mechanisms similar to
those used in determining the authorship of ordinary text.

Our approach starts with a model of the metamorphic
engine as a probabilistic generator of text. We
employ a simple model for closed-world probabilistic
instruction-substituting, metamorphic malware.

With the model in hand, some method of selecting
authorship features is needed, and a method is required
for matching the expected features to those found in a
program whose authorship is in question. We propose
to use instruction frequency vectors, or IFVs, as the
program abstractions to compare. An a priori computable
transition matrix is used to construct predicted IFVs
for different generations of the metamorphic malware.
This transition matrix is computed using a model of the
metamorphic engine. The predicted IFVs can then be

compared to the IFV of a suspect program to determine
whether it is a descendant of the Eve. Markov theory [4]
is used to formalize the frequency vector comparison
approach.

PROBABILISTIC AUTHOR MODEL
We are interested in recognizing variants of closed-world
probabilistic instruction-substituting metamorphic malware.
This class of malware carries a metamorphic engine that
uses a fi xed, fi nite set of transformation rules, each of which
maps an instruction (the left-hand side) to a set of possibly
larger code segments (the right-hand sides).

An example of this type of rule set appears in Figure 1.
In the example there are two rules, which for comparison
purposes in the analysis below have identical left-hand
sides. When the left-hand sides are found, the rule is
fi red with the probability of 0.2. There are two right-hand
sides which are selected at probabilities 0.3 and 0.7,
respectively.

These rules are typically carried as data in the malware
code. They are used by the engine, perhaps along with
other transformations, to substitute occurrences of the
left-hand sides of the rules probabilistically with one of
their corresponding right-hand sides. The probabilities
are assumed to be fi xed and exactly learnable from the
description of the engine. While this is a simple model of
metamorphic malware, it captures the essential elements of
probabilistic substitution.

Metamorphic malware gives rise to variations through the
generation of descendants. Let M denote some metamorphic
engine and (M, x) a malicious program using M to transform
its own code. The set of all programs (M, y) into which
(M, x) can possibly be transformed at the end of a run of
M are called the ‘fi rst-generation descendants of (M, x)’.
More generally, for positive integer n, an (n + 1)-generation
descendant of (M, x) is a fi rst-generation descendant of an
nth-generation descendant of (M, x). The descendants of a
given (M, x) are often called variants of each other.

PREDICTING FEATURE FREQUENCY
VECTORS
A set of features of a given program must be used to
determine whether it has been authored by a given

FEATURE 2

P left right1 P1 right2 P2
0.2 mov reg, imm → mov reg, imm 0.3

add reg, imm
mov reg, imm 0.7
sub reg, imm

Figure 1: Probabilistic instruction substitution.

VIRUS BULLETIN www.virusbtn.com

9MAY 2008

morphing engine. Ideally, the set of features selected is
such that the idiosyncrasies of the authoring program – its
specifi c generation characteristics – can be detected. In this
paper we use instruction forms, which are assembly-level
instructions in an abstract form. Depending upon the
implementation chosen, these could use merely the
operations themselves (i.e. without parameters or prefi xes),
or employ instruction ‘templates’ that keep parameter
counts and indexing modes but ignore all other details.
As will be shown, matching involves comparing the
frequencies of such features against the frequencies we can
expect from the metamorphic malware.

Let P denote a program and n the number of distinct
instructions occurring in P. The instruction frequency vector
of P, denoted IFV (P), is the n-tuple of pairs, each of which
consists of an assembly operation and the frequency (or
count) of that operation in P. For example, consider a code
segment s whose operations (ignoring all parameters and
prefi xes in this case) follow the sequence: mov, add, push,
mov, mov, add, pop. Then:

IFV (s) = [(mov, 3), (add, 2), (push, 1), (pop, 1)]

For any sequence of generations of malware created by a
probabilistic morpher, the IFVs will evolve in a predictable
way. Our model of probabilistic morphing does not
consider any previous transformations when selecting a
transformation rule to apply (i.e. it has no ‘memory’). It can
therefore be treated as a fi rst-order Markov process, and the
sequence of descent is a Markov chain. Each application
of a transformation rule by the engine serves to transform

Figure 2: IFV transition induced by metamorphic
transformation.

the IFV for the program. Figure 2 illustrates an example of
such a transformation using instruction ‘templates’ as the
instruction forms being used. A new generation is created
when the metamorphic malware applies one or more such
rules probabilistically on one of its variants. Producing such
a new generation is, in our Markov model, taken to be a
state transition. The IFV of the original variant (our ‘Eve’)
is the initial state.

Utilizing Markov theory has several advantages. It
provides clear formalization of the computations needed to
predict the evolution of IFVs as the metamorphic engine
produces new generations. Moreover, Markov theory
has identifi ed certain interesting classes of chains and
ways of using a chain’s transition matrix to infer useful
information about the process it represents. Two of these
results suggest clearly how and when the IFV transition
matrix (whose computation is discussed further below) can
be used to assist in the detection of descendants of a given
malware variant.

Distribution prediction using the successive
powers of the transition matrix

Typically, Markov chains are started in a state determined
by a probability distribution on the set of states, called a
probability vector. Let u denote a probability vector which
holds the initial probabilities of a malware’s IFV. Then
Tn is the nth power of T, and T

ij
(n) is the i, j-th entry of Tn.

The powers of T are known to give interesting information
about the evolution of these IFVs from one malware
generation to the next: for any positive integer n, T

ij
(n)

gives the probability that the chain, starting in state s
i
, will

be in state s
j
 after n steps. More generally, if we let u(n) =

uTn, then the probability that an nth-generation malware
descendant has IFV

i
 after n transitions is the ith component

of uTn.

Convergence towards a stationary state
distribution

For every transition matrix T of a Markov chain with a
fi nite space, there exists at least one stationary distribution,
i.e. a row vector s satisfying s = sT. Furthermore, if T is
irreducible and aperiodic, then it has a unique, a priori
computable stationary distribution given by lim Tn = 1s,
where 1 is a column vector all of whose entries equal 1.

Hence, for a piece of malware whose starting probability
distribution on the set of IFVs happens to be a stationary
distribution for its engine’s IFV transition matrix, the
corresponding states of the elements of every generation of
descendants will be distributed as indicated by s.

VIRUS BULLETIN www.virusbtn.com

10 MAY 2008

COMPUTING THE IFV TRANSITION
MATRIX

Let I = {I
1
, I

2
, ..., I

M
} denote the set of valid instruction

forms for the considered computing platform. Let T denote
a fi nite set of k productions of the form:

l
i
 → {(Pr

ij
 , r

ij
) : 1 ≤ j ≤ i

max
)}

where l
i
 ∈ I, r

ij
 ∈ I+, I+ is the set of all non-empty strings

of elements of I, i
max

 is the number of right-hand sides
indexed by i, and Pr

ij
 is the probability of use of the

sequence of instructions r
ij
 to substitute an occurrence

of l
i
in the program being transformed. In order to allow

the engine to choose whether or not to transform an
occurrence of l

i
, we require that exactly one of the r

ij
 be

identical to l
i
.

We also require that the identity Pr
ij
 = 1 holds for

each production and that two different productions do not
have identical left-hand sides.

Using the expression of the engine’s productions, we can
compute:

1. The probability that an arbitrary instruction i will be
transformed by the engine into an arbitrary number
x

j
 of some instruction j.

2. The probability that x
i
 instances of an arbitrary

instruction i will be transformed by the engine into
an arbitrary number x

j
 of some instruction j.

3. The probability that a code segment with an IFV v
will be transformed by the engine into an arbitrary
number x

j
 of some instruction j.

4. The probability that a code segment with an IFV
v will be transformed by the engine into a code
segment with an IFV v’.

The computation of the probabilities of step 2 requires
individual substitutions performed by an engine on a
variant to be mutually independent. Computation of each
of these probabilities is hence NP-complete in general,
since they each require a solution for an instance of the
SUBSETSUM problem.

SUBSETSUM takes as input a set of integers and asks
whether there is a subset of those whose elements sum to a
target number. An approximate solution to SUBSETSUM
may hence be needed here to compute these probabilities
approximately.

Successful completion of step 4 yields the IFV
transition matrix of the malware using the probabilistic
instruction-substituting engine represented by the matrix.
Each element of the matrix represents a state transition from
one IFV to another.

DECISION PROCEDURE
A malware detector can use the IFV transition matrix
to implement a fast decision procedure for determining
whether a given program is a descendant of the Eve. Let
D

0
denote the initial distribution vector of IFVs for the

malware. Hence, if we wish to recognize the descendants of
a malware variant Eve, then we set all of the components of
D

0
 to 0 except for that representing the IFV of the Eve. For

any positive integer n, compute the vector Dn = D
0
T, where

T is the engine’s induced IFV transition matrix. Deciding
membership in nth-generation descendants of the Eve
would consist of the following steps:

1. Disassemble the suspect program

2. Abstract the resulting assembly program into the
sequence s of instruction forms

3. Extract the IFV of s

4. If (Dn[IFV (s)] ≠ 0)
then s is an nth generation descendant of Eve
else s is not an nth generation descendant of Eve

The expression Dn[IFV (s)] represents the component of
Dn that corresponds to IFV (s). Since our goal is to decide
membership approximately in the various generations of
descendants of a given Eve, we only need to compute and
use T to determine the IFV distribution vectors Dn, up to a
chosen constant value n.

OPTIMIZATIONS AND APPROXIMATIONS
It is possible for malware to have no upper bound on
growth, and so in theory there may be no fi xed upper bound
for storing counts within the IFV. Hence, it is expected to
be necessary to impose an upper bound on the size of this
set while limiting, as much as possible, the deterioration
of the predictive and classifi cation power of the transition
matrix. Moreover, without due care in modelling the
features, the transition matrix may become too costly to
construct or store. Thus, in practice, some optimizations and
approximations will frequently be desirable so that the size
is reduced.

Possible optimizations and approximations include, but
are not limited to: (1) reducing the size of the instruction
set by abstracting an assembly language instruction to
its opcode mnemonic or by ignoring register names and
variable values; (2) imposing an upper bound on the
possible frequency of each individual instruction; (3)
imposing an upper bound on the value held in any of an
IFV’s components; (4) abstracting the range of possible
frequencies of each instruction to an imprecise scale (e.g.
‘low’, ‘medium’, and ‘high’); and (5) removing from the
i nstruction set those instructions which are as likely to

VIRUS BULLETIN www.virusbtn.com

11MAY 2008

appear in a malicious program as they are to appear in a
benign one.

One optimization that may be used in practice to reduce
the size of an engine’s induced transition matrix is fi rst
to pick a threshold t on individual opcode frequencies.
If the frequency of an opcode in a code segment P is
below the threshold, then the component of the IFV (P)
that corresponds to that opcode is set to 0, else it is set
to 1. Then, only a feasible count of instruction forms are
considered relevant. If, say, only 10 are selected, then the
IFV could be encoded using a vector of 10 binary numbers.

CONCLUSION AND FURTHER WORK

This paper brings to bear results in authorship determination
of (human) documents on the problem of determining
variants of a piece of metamorphic malware. After all,
a metamorphic variant is a machine-authored (more
accurately, machine-transformed) program.

The proposed approach suffers several limitations. The
basic IFV transition matrix may grow too large for us to
use in practice, and abstracting the matrix to optimize its
size may cause a loss in the predictive power of the matrix.
Furthermore, the probabilities of use may not be available.
This may be remedied by estimating them from a corpus
of descendants of a given malware Eve. Unfortunately,
estimated probabilities may not be precise, resulting in a
bias in the predictive power of the transition matrix.

We are currently investigating the possibility of extending
the approach to general probabilistic metamorphism where
arbitrary probabilistic transformations are employed by
a metamorphic engine. It may be possible to capture the
evolution of the instruction distribution of this type of
malware as it transforms its own code.

REFERENCES

[1] Ször, P. The Art of Computer Virus Research
and Defense. Symantec Press, Addison Wesley
Professional, 1st ed., 2005.

[2] Walenstein, A.; Mathur, R.; Chouchane, M.R.;
Lakhotia, A. Constructing malware normalizers
using term rewriting. Journal in Computer Virology.
2008.

[3] Spafford, E.H.; Weeber, S.A. Software forensics:
Tracking code to its authors. Computers & Security,
vol. 12, pp. 585–595, December 1993.

[4] Meyn, S.P.; Tweedie, R.L. Markov Chains and
Stochastic Stability. London: Springer-Verlag, 1993.

VB2008 OTTAWA
1–3 OCTOBER 2008

Join the VB team in Ottawa, Canada for the
anti-virus event of the year.

What: • Three full days of presentations
 by world-leading experts

 • Automated analysis

 • Rootkits

 • Spam & botnet tracking

 • Sample sharing

 • Anti-malware testing

 • Corporate policy

 • Business risk

 • Last-minute technical
 presentations

 • Networking opportunities

 • Full programme at
 www.virusbtn.com

Where: The Westin Ottawa, Canada

When: 1–3 October 2008

Price: Special VB subscriber price $1795

BOOK ONLINE AT
WWW.VIRUSBTN.COM

http://www.virusbtn.com/conference/vb2008/index
http://www.virusbtn.com/conference/vb2008/index
http://www.virusbtn.com/conference/vb2008/index

VIRUS BULLETIN www.virusbtn.com

12 MAY 2008

BLENDED MALWARE DEFENCE
Morton Swimmer
John Jay College of Criminal Justice/CUNY, USA

Anti-malware vendors talk a lot about ‘blended threats’
and their solution is always ‘defence in depth’, which
besides being a great way of selling more products is
basically the right direction. For many reasons, our
systems still contain vulnerabilities and are likely always
to do so until the economics of system design and
implementation change dramatically.

Now that operating system level vulnerabilities are better
under control, more and more vulnerabilities are being
found in the application level. Our best defence against
the exploitation of these vulnerabilities is to use reactive
technology such as anti-virus, anti-spyware, intrusion
detection and prevention systems (IDS and IPS), fi rewalls,
etc., but the delay these incur in detecting the attacks is
unacceptable.

The problem should be well known by now: the time
required to get the sample to the vendor, then through
analysis and fi nally to distribute the detection updates to
the clients, is still much longer than it takes potentially for
the malware itself to spread. Although malware detection
technologies typically use tunable heuristics, the problem
of false positives makes it diffi cult to bring proactive
detection to market, despite the number of startups trying to
play in this fi eld. It would be an advantage to have a more
systematic and immediate way of creating these signatures
and then be able to deploy them to where they are needed
most as quickly as possible. The cure must spread faster
than the disease, as we used to say when working on the
IBM Digital Immune System.

In this article, we see how the convergence of various
security technologies can help us accomplish this goal. This
is achieved by utilizing the strengths of various sensors and
being able to generate semantically relevant signals from
them. This is a ‘blended response’ to a ‘blended threat’.

IMMUNOLOGY

We are seeking a model for dealing with a complex and
multi-level threat. Because of its powerful metaphor, the
biological immune system has inspired many defence
systems, not least in the fi eld of intrusion detection and
virus detection. In particular, the Self/Non-Self (SNS)
detection mechanism used by the mammalian immune
system is a highly compelling model.

Unfortunately, in practice, the mammalian immune system
analogy – in particular SNS – has not worked particularly

OPINION
well when applied to computer security. The SNS model
relies heavily on the ability to differentiate between self
and foreign proteins and the ability to establish a memory
of past infections. However, biology has many orders of
magnitude more diversity and complexity than computer
systems, which tend to obviate many of the problems such a
system may have including the occasional false positive or
false negative (which may have catastrophic effects on one
individual, but not on the entire species). The false positive
rate of such a system is much higher than is acceptable in
the computer world.

DANGER MODEL
An alternative model, called the Danger model, has
been proposed by Dr Polly Matzinger (see
http://www.ncbi.nlm.nih.gov/pubmed/8011301) and it
departs in one signifi cant way from classical immunology
in that it does not rely on SNS to fi nd the foreign body.
Instead, it relies on danger signals from injured cells in
order for the antigen-presenting cells (APC) to activate
the T-cells and thereby the appropriate B-cells that
eliminate the antigen. This model is not accepted in the
medical community yet, and it may never be, but we don’t
necessarily need the model to be validated in the medical
fi eld to fi nd it useful in ours.

For us, the real lesson of the Danger model is that
co-stimulation through a signal that identifi es the threat
as dangerous is required to confi rm an attack. We want
to combine a well-defi ned danger signal with some other
well-defi ned signal, such as an SNS signal, and possibly
others, before issuing an alert. The resulting composite
alert will then be used to stimulate other components of the
defence network.

We can also contemplate diluting this model slightly,
simply by requiring two or more independent signals – so
long as both signals indicate an attack – rather than strictly
requiring evidence of clear and present danger in one of
the signals.

Because the Danger model gives us a higher confi dence
level in our observation of the attack, we can now derive
signatures automatically from the running system.
Analogously to the cloning of the appropriate T-cells,
the signatures are then spread from the originator to
neighbouring systems, thus spreading the detection out from
the origin.

The sensors that use these signatures can dismiss unused
ones over time. This can happen, for example, because the
type of sensor in question never sees that sort of traffi c.
Keeping old signatures around too long may degrade sensor
performance or cause false positives. Collectively, however,

http://www.ncbi.nlm.nih.gov/pubmed/8011301

VIRUS BULLETIN www.virusbtn.com

13MAY 2008

the entire network must be able to maintain a complete
set. This is close to the biological model, where fewer and
fewer T-cells are available to detect a long gone threat, but
always remain in minute quantities and quickly replicate
if stimulated by a recurrence of that threat. This is all very
nice in theory, but how could an implementation look?

A SKETCH OF AN IMPLEMENTATION
It would be foolish to throw out existing technologies
and all the intelligence that went into them, but some
things need to change to build an approximation of this
architecture.

First of all, despite the trend towards security suite products,
internally these are comprised of separate components, each
of which is expert at doing a certain thing well in a certain
context. There are also many products that should factor
into a complete malware security solution but which are
perhaps not yet mainstream, such as the Firefox extension
NoScript.

On my Mac, I use a personal fi rewall product for
monitoring incoming and outgoing connections, an
anti-virus product to determine if a fi le is infected, and a
script monitor for my Firefox browser. I feel this is less
than ideal, but it has worked for me so far. Of course, these
products don’t talk to each other to build the bigger picture
of a potential attack or even instigate countermeasures
automatically.

However, using an anti-virus solution designed for
detecting Windows malware on a Mac doesn’t make
that much sense and may result in false positives (to its
credit, the one I’m using hasn’t produced a false positive
so far). The problem is that taking any tool out of the
context it was designed for is just not a good idea. Trying
to detect DOS/Windows malware on a Mac may incur
false positives merely because there are fewer Mac fi les
in a vendor’s false positive set or because the instruction
set of the G4 processor produces unexpected code
characteristics. An IDS system like SNORT may detect
suspected attacks against a database where there is no
database on the subnet.

On the other hand, a real instance of Windows malware on
a Mac system or a database exploit on a subnet without
a database, is still suspicious and needs to be reported.
However, the report should indicate the futility of the
attack because in our model this infl uences how we react
to it. Furthermore, modern anti-virus products are using
heuristics for malware detection, which is not the same
as signature-based detection. To avoid false positives, the
heuristics are tuned to be extremely conservative, but in
our danger model early warning heuristics can be useful, so

long as the type of detection is made explicit. The context is
important.

Behaviour-based (BB) security tools, in particular in the
anti-malware fi eld, have been on the rise recently because
they promise to remedy the problem of detection lag time
long associated with knowledge-based (KB) tools. However,
they are very different in nature and in our model we treat
them as complementary to KB tools.

BB monitors are capable, at least theoretically, of producing
signatures that KB scanners can consume in our danger
theory model. But before they can be allowed to do that,
we need to address the problem of false positives. The
unfortunate fact is that BB monitors are intrinsically prone
to false positives, so the goal is to reduce the number of
false positives to nearly negligible levels.

FORMALISM
In the past, attempts have been made to use event
correlation on the data from intrusion detection sensors
to produce a signal of higher quality through aggregation.
Despite incremental improvements, no one would trust the
output of correlation to be false positive free. The trouble
is that inputs to these systems are not independent of each
other and correlating the events cannot produce a better
signal if the input signals are effectively reporting the
same thing. This is where the missing context comes back
to bite us.

Furthermore, the information in the signal is usually
imprecise in that the event is reported using a
vendor-specifi c code or text, and while correlation can adapt
to the format of the input signal, it is much harder to attach
a precise meaning to some arbitrary text or code.

What is needed is more formalism in event reporting. The
output of sensors, be they IDS, AV, honeypots, etc., needs to
be expressed in a way that is formally comparable to other

VIRUS BULLETIN www.virusbtn.com

14 MAY 2008

EEYE DIGITAL SECURITY BLINK
PROFESSIONAL 4.0
John Hawes

Founded ten years ago and based in Orange County,
California, eEye Digital Security fi rst made its name as
a vulnerability research company, providing security
advisories on fl aws found by its teams investigating a wide
selection of software and offering businesses a range of
security auditing services. From this grew the company’s
current range of security offerings, which include several
packages focused on protecting network-facing servers
from the vulnerabilities presented by fl aws in software and
confi guration, managing policy enforcement and incident
reporting across corporate networks, as well as monitoring
network traffi c for potentially dangerous activity.

The company’s vulnerability alerting service continues to
offer privileged detail and early warnings on upcoming
dangers, as well as a forum for administrators to debate the
latest fl aws and the hottest techniques for locking down
systems and networks. The company boasts more than half
of the US Fortune 100 companies amongst its clients, and
its early research successes include spotting and alerting on
the IIS fl aw, which soon after allowed the Code Red worm
to spread across the world’s web servers.

The Blink desktop offering fi rst appeared about four years
ago, and has grown from a simple HIPS product into a
full endpoint suite, combining the standard ingredients of
anti-malware and fi rewall with proactive defence in the
form of intrusion prevention and vulnerability management.
The suite is available in a full-featured ‘personal edition’
for home users, and the professional edition, which offers
greater fl exibility of confi guration and can be combined
with a centralized management and reporting system.

Version 3.0 of the product, using anti-malware technology
provided by the Norman engine, received its fi rst VB100
award in June last year in some style. The latest version
(4.0) is due for release shortly, featuring the redesigned
interface introduced in version 3.5, additional Windows
Vista support and a number of improvements under the
hood.

WEB PRESENCE, INFORMATION AND
SUPPORT
eEye’s main web presence is at www.eeye.com, a site
dominated by product marketing with in-depth coverage
of the fi rm’s various offerings. All products are available
as time-limited trial editions, with the personal edition of
Blink currently free for home-user purposes while offering

PRODUCT REVIEW
signals. Note that there is no need for all vendors to agree
on a single language, but in whatever form they decide to
express their signals, the output must not only be parsable,
but also comparable.

Over the last couple of years a model for expressing ideas
in a comparable form has matured in the form of OWL-DL
(a subset of OWL-Full), which is an ontology language
for description logics. Both the event itself and its context
can be captured this way, elevating what could have been a
piece of data with semi-well-known characteristics to a true
piece of information that can be used in a reasoning system.
Once more than one signal has been found from truly and
provably independent sources, the correlator can determine
if there is suffi cient merit to raise an alert. With greater
confi dence in the quality of the resulting signal, automatic
response in the form of signature capture and dissemination
can be achieved.

Lastly, no single vendor is capable of creating a turn-key
system based on these guidelines. It is not feasible to cover
all available platforms, neither is it really necessary for
one vendor to do so. The key is to make the architecture
open, but secure. The modes of communication must be
documented and freely available for any willing vendor to
participate, though the system must still be kept secure from
subversion. That is certainly a tough problem but not an
insurmountable one as there are various successful models
one can emulate.

CONCLUSIONS
Now that the anti-malware industry has matured, the feeling
is that it has lost sight of its mission of protecting the
community. I sorely miss the big picture when looking at
the offerings of the various vendors. Certainly, the start-ups
with their (sometimes) new ideas can only focus on their
individual solutions. The smaller vendors provide us often
with very focused products, which is good, but only if
they interoperate. The large vendors are the ones who talk
loudest of ‘blended threats’ and ‘defence in depth’, but
cannot (or in one case will not) cover enough of the IT
infrastructure to deliver on their own.

It would be of great benefi t to the IT community at large if
a more complete solution could emerge soon, as my feeling
for the last year or so is that we are fi nally losing the war
against malware.

Morton Swimmer will present an extended version of this
paper at VB2008 in Ottawa this October. VB2008 takes
place 1–3 October 2008 in Ottawa, Canada. The full
programme, with abstracts for each paper, as well as online
registration, can be found at http://www.virusbtn.com/
conference/vb2008/programme/.

http://www.virusbtn.com/conference/vb2008/programme/index
http://www.eeye.com/

VIRUS BULLETIN www.virusbtn.com

15MAY 2008

the same level of protection as the professional suite, and all
are backed up by a wealth of information about them and
the security problems they address. The site also carries the
usual items of company and product news, as well as links
to a number of favourable reviews and test performances.

On the more technical side of things, a research sub-site is
the home of the company’s vulnerability information, most
of which seems to be available only to subscribers to the
company’s ‘Preview’ services. This offering is available
at several levels of detail, the higher of which include
personalized network security scanning, advice and insider
information on the latest undisclosed vulnerabilities, as well
as the standard alerting, in-depth analysis and newsletters
on signifi cant software security issues. The area also
includes a selection of security research tools available for
download.

Technical support for the products is similarly available
at a range of subscription levels, with the most basic
providing access to email-based support via an online
form. A knowledgebase of common issues is available to
all, however, and provides brief and often highly technical
details on a range of common issues, focusing on the
server range of products and the management suite. In
fact, all the searches I carried out specifying Blink as
a fi lter returned information on issues associated with
deploying Blink across the network (generally solvable
by setting Windows networking controls correctly).
Behind the customer login area resides access to further
documentation and guidance, including the user manuals
which are also accessible directly from within the product,
more on which later.

Having spent long enough looking at the information
available online, it was time to get my hands on the product
and see whether it would stand up to the impressive boasts
made about it in the wealth of marketing material.

INSTALLATION AND CONFIGURATION
Initial installation of the product is a pretty standard
process. The installer for the latest beta build of version
4.0 of the product comes in at a very reasonable 45 MB
and runs through its business pretty rapidly, with the usual
installation location options and EULA to be got through,
as well as an unusually long activation key. On one
system, the installer complained about a freeware browser
sandboxing utility I had installed, insisting it be removed
before the installation could continue, but there were no
other hitches.

At the end of the process a dialog provides some
information on the product’s default settings and status
– this begins with the fi rewall in rather minimal protective
status, set to allow anything that is not specifi cally blocked
by a rule. This gives something of a clue as to how the
product operates – this is no simple set-and-forget tool
for the average unskilled user, and although the default
set of functions do provide a basic level of protection
against the majority of attacks, the beauty here is in the
depth of control available. A huge range of optional
extras are available to achieve maximum lockdown, while
the product’s initial state is to apply only those thought
suitable for all situations. Tuning the product to meet the
individual requirements of the user requires considerable
understanding of the problems being faced and the means
provided by the product to mitigate them.

The interface provided to access this vast confi guration
is simple and reasonably appealing, being modelled
along similar lines to built-in Windows tools such as
the ‘Security Center’ or other system confi guration
applications, with menus of options on the left and details
in the main panel. This gives it a straightforward and
no-nonsense feel, achieving a sense of simplicity and
authority without the unfriendly starkness which often
comes along with more business-oriented products. This
again refl ects the product’s ethos, not bending to the
whims of the inexperienced user with lots of twinkly
cartoon graphics.

Navigating the system is pretty untaxing. There are fi ve
main categories, of which at least three are pretty obvious
– the fi rewall, anti-malware and vulnerability scanning
components. The other two, labelled ‘Intrusion Prevention’
and ‘System Protection’, seem to overlap somewhat and it
is not immediately obvious what each covers, but looking
inside soon clears things up. The system protection
area covers guarding of registry and applications, while
everything else, including anti-phishing measures, is
included under intrusion prevention. With most of these
now fairly standard in security suites, I opted to start off
with the most novel, the vulnerability scanner.

VIRUS BULLETIN www.virusbtn.com

16 MAY 2008

SYSTEM HARDENING FUNCTIONS

With the product installed, there are several steps
required before the host system is fully secured to Blink’s
satisfaction. The initial interface shows several items to be
lacking the comforting green tick that signifi es that they are
fully active. The most interesting and unusual of these is
the vulnerability scanner. This requires an initial run to fi nd
any problems with the current setup of the system, and the
setting up of a schedule to look out for any further fl aws.

Running the vulnerability scan is a pretty simple process.
The module has few options, simply the ability to schedule
scans or run them manually, and a report viewer to analyse
the results. The scan itself was pretty fast, taking no more
than a minute or two even on crowded and low-powered
systems. In test systems in the sealed VB lab, a large
number of problems were easily identifi ed thanks to the
lack of access to recent updates from Microsoft. To emulate
a real user more closely, I fi red up a well-used and by now
rather wheezy old laptop, which had languished powered
down under a bed for several months. With the product
installed and updated, the vulnerability scanner found an
even wider range of issues – the majority of which were
easily resolved by letting the Microsoft updater carry out
its slow and tedious business of downloading and installing
missing patches. However, for the remaining issues it
seemed that considerably more work would be required to
satisfy Blink’s stringent requirements.

Several of the remaining issues concerned various pieces
of software installed on the system, ranging from several
Adobe and Mozilla products to more surprising ones such
as WinRar. While some had their own updaters, several
required manual update or even reinstallation. Among the
most serious problems found was a ‘zero-day’ vulnerability

in some Microsoft software which, as the report pointed out,
was as yet unpatched; instead a workaround was suggested,
with a link helpfully provided to advice from US-CERT on
applying it. One item remaining on the ‘high risk’ list was
a problem with anonymous registry access, a slack setting
which could be closed down with a few tweaks in the
registry.

Browsing further down the lengthy report, a slew of
entries detailed potential weaknesses in my system. These
included a lack of fully trackable logging, unsafe caching
of usernames, passwords and page fi le contents, as well as
various issues with unnecessary services, drive sharing and
allowing unaccredited users to perform various activities.
The autorun default, a spreading vector of a lot of recent
unpleasant worms, was also highlighted, and even the fact
that users could insert USB key drives and use them to
move data off the machine was mentioned as a potential
means for unwanted data extraction.

Each entry was accompanied by details of how to
correct or mitigate the problem, usually in the form
of instructions for doctoring registry keys, changing
settings using Control Panel tools, or links to more
involved instructions in appropriate places, predominantly
Microsoft Knowledge Base articles. Each entry was also
accompanied by links to alerts and advisories on the
subject, from the likes of Secunia and iDefense as well
as eEye’s own vulnerability pages, Microsoft bulletins
and articles and other alerts from the software developers
involved in any given fl aw, with CVE numbers included
where appropriate.

The depth of detail provided was remarkable, and the
range of areas covered, from potential remote exploits
and sources of data extraction to problems with fully
accountable logging and physical access points for abusive
users, was quite staggering. The sheer scale of the issue

VIRUS BULLETIN www.virusbtn.com

17MAY 2008

of locking down a system could easily be overwhelming,
particularly for the less technically minded user, but for
a network admin wanting to ensure all the systems in
his charge are as secure as possible, and with the power
to automate most of the tasks involved, this is surely an
invaluable tool.

Vulnerabilities in software are a huge vector for malware,
particularly in the ever-growing area of web threats
which are rapidly increasing in complexity, subtlety
and scale, with more and more legitimate sites playing
unwitting host to attacks. Most of these attacks make use
of long-patched fl aws, probing systems for holes to sneak
malware onto new victims, and the importance of keeping
a system fully patched is greater than ever. Since this task
is also more complex than ever, having details of all the
potential dangers in a single report, along with information
on remediation, and having it regenerated rapidly on a
regular basis to keep up with the latest developments, is an
enormous advantage.

The only feature I could think of that would be a useful
addition would be an option to disregard some of the
entries, as either unfi xable in a given situation or not
applicable under a corporate policy, but given the attention
to detail it seems more than likely that such functionality
is already available to admins using the separate
management tools. As it was, it was tempting to try to
eliminate each and every one of the issues fl agged up, if
only to see what would happen when a scan found nothing
to complain about – surely some kind of fanfare or shiny
virtual gold medal would be an appropriate reward for
such diligence.

Sadly time was too pressing to go to such great lengths,
and I left my test machines with a few minor issues
remaining unfi xed to look into the more common security
measures provided by the suite.

SYSTEM PROTECTION FUNCTIONS
Of course, once the system is fully patched and confi gured
to the product’s liking, the vulnerability scanner
becomes a core part of the ongoing protection offered. A
scheduled scan will highlight new patches as and when
needed, including updating the status of those nasty
as-yet-unpatched fl aws. New confi guration tips are also
added as researchers spot new vectors and new potential
issues with the standard setup of a Windows system. Beyond
this rather special functionality, however, the product
also offers a full set of the more usual protection features
provided by most other security suites on the market.

At the core of the standard anti-malware protection
provided is the Norman engine with its strong ‘sandbox’
heuristics. Running it over the VB test sets showed a high
level of detection, which was improved still further after
upping the heuristic settings. The interface to the engine and
all the fi le-hooking and other integration is developed by
eEye, and operating the scanner and adjusting the on-access
settings proved a pleasingly simple business, with defaults
seeming well chosen and appropriate. Any on-demand
scans required were also available from the context menu.
On its own this seemed something of an improvement on
Norman’s own interface to the same detection technology,
which I have frequently found rather complex and fi ddly
when adapting it to the specifi c needs of VB100 testing.

Scanning speeds and on-access overheads closely mirrored
past test results for Norman and Blink, implying that little
extra burden was being placed on the systems by the
range of added extras. The Norman engine has a long and
illustrious past in VB100 comparative testing, and with
a few recent problems caused by a batch of polymorphic
items now behind it, it looks set to continue to do well. It
also regularly achieves decent scores in other independent

VIRUS BULLETIN www.virusbtn.com

18 MAY 2008

tests, making the ‘Advanced’ grade in the most recent
AV-Comparatives test and scoring ‘Satisfactory’ or better in
all but the speed category in AV-Test’s latest set of results.
In our own speed measurements, both Norman and Blink
products appear in the middle of the fi eld, somewhat
behind some of the zippiest products but never imposing
the sort of overheads seen in the weightier ones. Using
the product on a range of systems I never observed any
intrusive slowdown, although when running the updater on
a particularly aged and underpowered machine whilst trying
to carry out several other tasks, things did become a little
slow to respond for a few minutes as drive lights fl ickered
and crackled with effort.

Moving on to the intrusion prevention fi lters, these
again seem to focus to a large extent on vulnerability
monitoring, watching numerous protocols for suspicious
data which could indicate an attempted attack. The large set
of categories comes fully stocked with long lists of known
bad behaviours, and a separate tab presents a lengthy list
of signatures for known exploits. The majority are active
by default, but some are provided for those who have more
specifi c needs, which include a website-blocking section
populated with common social networking sites.

The process of adding more rules and signatures is via
a simple and straightforward wizard, which in all these
modules advises the user to be sure they know what they
are doing before setting up a rule which could impinge
on important system operations. With the default settings
already pretty thorough, exploit signatures can be extended
by adding pattern strings of one’s own design, providing
the user with a level of control over what comes through to
the machine usually only available to network admins. The

phishing controls, listed under ‘Identity Theft Rules’, cover
a range of common tricks found on phishing web pages,
including hidden or spoofed URLs and links, and again can
be extended to the user’s content.

The system protection setup operates in a similar manner,
this time with far fewer built-in rules but with the same
straightforward system to allow the user to generate their
own. Setting controls on specifi c applications, ensuring
doctored versions cannot be run, or even allowing them
only to be run by a specifi c parent process, is a pretty
straightforward task achieved in a few clicks, and a similar
system prevents (or allows) access to specifi c areas of
the registry.

The fi rewall also uses the same system, giving a pleasing
consistency across the product. The various options, with a
handful of default system-wide rules and more for specifi c
applications, are presented clearly and legibly with a
good level of plain-language description to assist the less
technical user. Its initial rather passive setup does require
a few extra steps to ensure a decent level of protection, but
this can be done with a couple of clicks of check-boxes, and
it seemed to operate well once fully up and running.

Most of these rules function in a quiet and unfl ashy way, not
bombarding the user with a deluge of hyperbolic warnings
about blocked activities and simply logging unwanted
events, if desired. Even the on-access malware scanner
produced small, simple popups with the minimum of fuss.

The settings can be programmed to provide a training
popup, fi lled with detail and options, when an unknown
application attempts a restricted activity. In my tests,
these managed to block the handful of malicious items
that managed to get past the signatures and heuristics of
the anti-malware engine, as they attempted to leak data
from the system, contact base to download further nasties,

VIRUS BULLETIN www.virusbtn.com

19MAY 2008

doctor important registry entries or perform other malicious
activities. The popups default to a deny action if left for
45 seconds.

My only quibble with the whole setup is that the
descriptions of the rules are often considerably longer
than the display space available. Double-clicking the title
bar boundaries shrinks the area even further rather than
expanding it to the required width, which means that it takes
some fi ddly stretching of boxes and dragging of sliders to
read the full detail of any given rule or setting. That this
detail is available at all is impressive, however.

HELP AND GUIDANCE
The provision of clear and useful information, a pattern
repeated across the product, caters more than adequately
for the complexity of confi guration available. While this
is not a simple set-and-forget system, and may appear
daunting to many inexperienced users at the desktop level,
the product provides plenty of information for those willing
to put a little effort into deciding for themselves how to set
things up.

Beyond the basic information provided alongside each
individual rule, vulnerability alert or malware warning, a
superbly detailed manual is provided, alongside an equally
well thought out help system. Unlike many help pages,
which often do little more than list the available buttons and
what they do, this is properly task-oriented, detailing the
steps required to achieve a given objective. The manual PDF
runs to some 99 pages, providing even more step-by-step
information on how the various features should be operated,
including detailed instructions for defi ning new rules. All
are written in lucid language with a minimum of jargon, and
are clearly aimed at putting the exceptional power of the
product within the reach of the humbler user.

CONCLUSIONS
With such an in-depth product to look at in a very
short time, it has not been possible to do more than
skim the surface of Blink’s capabilities. I have focused
predominantly on the vulnerability scanner as it is a rare
if not unique component in a security suite, but the rest
of the functions (apart from the straightforward anti-
malware scanner) are also unusual in the sheer depth of
confi guration available. In the right hands, this product
can do far more than provide solid security from malicious
code and attacks; it can implement a complete usage
policy, managing many aspects of how a system and its
user operate, including controlling access to unwanted
software and web resources, maintaining hygiene
standards and accountability through logging.

Of course, those hands need to know what they are doing,
but as I have come to see through longer exposure to the
product and its support systems, they do not necessarily
need to be those of an expert. Enough background
information and links to further resources are provided at
almost every level of the product to allow an informed and
committed novice not only to implement a solid security
regime on their system, but also to learn a considerable
amount about it along the way. The home-user version,
offering the same full range of tools and options, can be put
to use fairly simply using more or less the default settings
to provide a very decent level of security, but with a little
effort, and some trust in the assistance provided, can allow
anyone to take control of their computer and take a little
responsibility for their own online safety.

Of course, I can understand how this could be rather too
much to bear for many home users, and they may be better
off investing in something more cuddly, but for those
willing to put in the effort the rewards should be well
worth it. In a more professional setting, for those requiring
absolute control to enforce a detailed and demanding
security policy, Blink can provide a superb breadth of power
to do just that, in a single well-designed and solid package.

Technical details

eEye Digital Security Blink Professional 4.0 was variously tested
on:

AMD K7, 500 MHz, 512 MB RAM, running Microsoft Windows
XP Professional SP2 and Windows 2000 Professional SP4.

Intel Pentium 4 1.6 GHz, 512 MB RAM, running Microsoft
Windows XP Professional SP2 and Windows 2000 Professional
SP4.

AMD Athlon64 3800+ dual core, 1 GB RAM, running Microsoft
Windows XP Professional SP2 and Windows Vista SP1 (32-bit).

AMD Duron 1 GHz laptop, 256 MB RAM, running Microsoft
Windows XP Professional SP2.

Technical details

eEye Digital Security Blink Professional 4.0 was variously tested
on:

AMD K7, 500 MHz, 512 MB RAM, running Microsoft Windows
XP Professional SP2 and Windows 2000 Professional SP4.

Intel Pentium 4 1.6 GHz, 512 MB RAM, running Microsoft
Windows XP Professional SP2 and Windows 2000 Professional
SP4.

AMD Athlon64 3800+ dual core, 1 GB RAM, running Microsoft
Windows XP Professional SP2 and Windows Vista SP1 (32-bit).

AMD Duron 1 GHz laptop, 256 MB RAM, running Microsoft
Windows XP Professional SP2.

MAY 2008

VIRUS BULLETIN www.virusbtn.com

END NOTES & NEWS

20

ADVISORY BOARD
Pavel Baudis, Alwil Software, Czech Republic
Dr Sarah Gordon, Independent research scientist, USA
John Graham-Cumming, France
Shimon Gruper, Aladdin Knowledge Systems Ltd, Israel
Dmitry Gryaznov, McAfee, USA
Joe Hartmann, Microsoft, USA
Dr Jan Hruska, Sophos, UK
Jeannette Jarvis, Microsoft, USA
Jakub Kaminski, Microsoft, Australia
Eugene Kaspersky, Kaspersky Lab, Russia
Jimmy Kuo, Microsoft, USA
Anne Mitchell, Institute for Spam & Internet Public Policy, USA
Costin Raiu, Kaspersky Lab, Russia
Péter Ször, Symantec, USA
Roger Thompson, CA, USA
Joseph Wells, Lavasoft USA

SUBSCRIPTION RATES
Subscription price for 1 year (12 issues):

• Single user: $175

• Corporate (turnover < $10 million): $500

• Corporate (turnover < $100 million): $1,000

• Corporate (turnover > $100 million): $2,000

• Bona fi de charities and educational institutions: $175

• Public libraries and government organizations: $500
Corporate rates include a licence for intranet publication.

See http://www.virusbtn.com/virusbulletin/subscriptions/ for
subscription terms and conditions.

Editorial enquiries, subscription enquiries, orders and payments:
Virus Bulletin Ltd, The Pentagon, Abingdon Science Park, Abingdon,
Oxfordshire OX14 3YP, England
Tel: +44 (0)1235 555139 Fax: +44 (0)1235 531889
Email: editorial@virusbtn.com Web: http://www.virusbtn.com/
No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.
This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specifi c clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.
VIRUS BULLETIN © 2008 Virus Bulletin Ltd,The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. /2008/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

The 2nd International CARO Workshop will be held 1–2 May
2008 in Hoofddorp, the Netherlands. The focus of this year’s
workshop will be on the technical aspects and problems caused by
packers, decryptors and obfuscators in the broadest sense. For details
see http://www.datasecurity-event.com/.

EICAR 2008 will be held 3–6 May 2008 in Laval, France. See
http://www.eicar.org/conference/ for the full details.

The 5th Information Security Expo takes place 14–16 May 2008
in Tokyo, Japan. For more details see http://www.ist-expo.jp/en/.

The 9th National Information Security Conference (NISC) will
be held 21–23 May 2008 in St Andrews, Scotland. For full details
and registration information see http://www.nisc.org.uk/.

Hacker Halted USA 2008 takes place 1–4 June 2008 in Myrtle
Beach, SC, USA. The conference aims to raise international
awareness towards increased education and ethics in information
security. Hacker Halted USA delegates qualify for free admission to
the Techno Security Conference which runs concurrently. For more
details see http://www.hackerhalted.com/.

The 20th annual FIRST conference will be held 22–27 June 2008
in Vancouver, Canada. The fi ve-day event comprises two days of
tutorials and three days of technical sessions where a range of topics
of relevance to teams in the global response community will be
discussed. For more details see http://www.fi rst.org/conference/.

The SecureAmsterdam conference on emerging threats takes
place 15 July 2008 in Amsterdam, the Netherlands. For details see
https://www.isc2.org/cgi-bin/events/information.cgi?event=66.

The 17th USENIX Security Symposium will take place 28 July
to 1 August 2008 in San Jose, CA, USA. A two-day training
programme will be followed by a 2.5-day technical programme,
which will include refereed papers, invited talks, posters,
work-in-progress reports, panel discussions, and birds-of-a-feather
sessions. For details see http://www.usenix.org/events/sec08/cfp/.

Black Hat USA 2008 takes place 2–7 August 2008 in Las Vegas,
NV, USA. Featuring 40 hands-on training courses and 80 Briefi ngs
presentations. This year’s Briefi ngs tracks include many updated topics
alongside the old favourites including zero-day attacks/defences,
bots, application security, deep knowledge and turbo talks. Online
registration is now open. For details see http://www.blackhat.com/.

VB2008 will take place 1–3 October 2008 in Ottawa, Canada.
Presentations will cover subjects including: sample sharing,
anti-malware testing, automated analysis, rootkits, spam and botnet
tracking techniques, corporate policy, business risk and more. Review
the programme and register online at http://www.virusbtn.com/
conference/vb2008.

Black Hat Japan 2008 takes place 7–10 October 2008 in Tokyo,
Japan. For full details see http://www.blackhat.com/.

The third APWG eCrime Researchers Summit will be held 15–16
October 2008 in Atlanta, GA, USA. eCrime ‘08 will bring together
academic researchers, security practitioners, and law enforcement
to discuss all aspects of electronic crime and ways to combat it. For
more information see http://www.antiphishing.org/ecrimeresearch/.

The SecureLondon Workshop on Computer Forensics will be
held 21 October 2008 in London, UK. For further information see
https://www.isc2.org/cgi-bin/events/information.cgi?event=58.

RSA Europe 2008 will take place 27–29 October 2008 in London,
UK. For full details see http://www.rsaconference.com/2008/Europe/.

CSI 2008 takes place 15–21 November 2008 in National Harbor,
MD, USA. A call for papers is now open. Online registration will be
available from June. See http://www.csiannual.com/.

AVAR 2008 will be held 10–12 December 2008 in New Delhi,
India. A call for papers has been issued, with a submission deadline
of 15 July. For more details see http://www.aavar.org/avar2008/.

http://www.datasecurity-event.com/
http://www.eicar.org/conference/
http://www.ist-expo.jp/en/
http://www.nisc.org.uk/
http://www.hackerhalted.com/
http://www.first.org/conference/
https://www.isc2.org/cgi-bin/events/information.cgi?event=66
http://www.usenix.org/events/sec08/cfp/
http://www.blackhat.com/
http://www.virusbtn.com/conference/vb2008/index
http://www.blackhat.com/
http://www.antiphishing.org/ecrimeresearch/
https://www.isc2.org/cgi-bin/events/information.cgi?event=58
http://www.rsaconference.com/2008/Europe/
http://www.csiannual.com/
http://www.aavar.org/avar2008/index.htm
http://www.virusbtn.com/virusbulletin/subscriptions/index
http://www.virusbtn.com/
mailto:editorial@virusbtn.com

CONTENTS

S1MAY 2008

FEATURE
DELIVERING RELIABLE
PROTECTION AGAINST PHISHING
WEBSITES
Sorin Mustaca
Avira, Germany

Phishing, spam and malware have become major problems
for users of the Internet and for online businesses. Whether
delivered as email attachments or via URLs contained
in emails, the AV industry is doing its best to protect
customers against these threats by gathering and analysing
emails with dangerous attachments and by blocking
malicious URLs.

Any user who buys a complete security product can
expect to receive both local and online protection. Online
protection is provided by those products or modules that
deal with information coming from outside the system or
network on which they are operating. Usually these are
the fi rewall, anti-spam, anti-phishing, URL-fi ltering and
parental control modules. Great importance is currently
placed on URL fi lters, which must be able to prevent the
user from accessing phishing and malware-serving sites.

It might seem a trivial task to identify malicious URLs, pack
them in a fi le and send them via updates to the customer so
that the URL fi lter can block them, but the reality is a little
more complex.

It all starts with spam traps, in which hundreds of
thousands of spam, phishing and malware emails are

Figure 1: System’s architecture.

NEWS & EVENTS
NEW HOME FOR THE SPAMMERS’
COMPENDIUM
For more than fi ve years, John Graham-Cumming has
tracked the tricks used by spammers in the bodies of their
messages and recorded the details of those tricks in a
collection known as The Spammers’ Compendium. As the
Compendium has grown it has proved a useful resource for
spam-fi ghters, enabling patterns in trickery to be identifi ed
and innovations to be spotted. At the end of March,
however, John announced his retirement from the anti-spam
industry and VB is very pleased to reveal that John has
handed over the hosting and maintenance of the Spammers’
Compendium to Virus Bulletin.

The new home of the Spammers’ Compendium is at
http://www.virusbtn.com/tsc. As previously, entries are
made in The Spammers’ Compendium when new tricks
have been identifi ed in spam seen in the wild by volunteer
contributors. Submitters of new tricks will be credited in
The Spammers’ Compendium for their contributions. Please
send contributions to tsc@virusbtn.com.

EVENTS
The 13th general meeting of the Messaging Anti-Abuse
Working Group (MAAWG) will be held in Heidelberg,
Germany, 10–12 June 2008. The meeting is open to MAAWG
members only. The 14th general meeting (also members only)
will take place 22–24 September 2008 in Harbour Beach, FL,
USA. See http://www.maawg.org/.

CEAS 2008 will take place 21–22 August 2008 in Mountain
View, CA, USA. CEAS is soliciting non-spam email for use
in its 2008 spam challenge. Non-sensitive legitimate email can
be donated at http://ceas.klika.eu/ceas/. For more information
about the event see http://www.ceas.cc/2008/.

S1 NEWS & EVENTS

S1 FEATURE

 Delivering reliable protection against
 phishing websites

http://www.virusbtn.com/tsc
mailto:tsc@virusbtn.com
http://www.maawg.org/
http://ceas.klika.eu/ceas/
http://www.ceas.cc/2008/

SPAM BULLETIN www.virusbtn.com

MAY 2008S2

gathered each day. An
automated system gathers
the emails and splits
them into spamming
and phishing categories
(Figure 1). The emails
categorised as phishing
are sent to a URL analysis
system. This system must
check for false positives
(i.e. check that the URLs
contained in these emails
really are malicious),
check that the website to
which each link points
is live and online, and
that the website is a
phishing site rather than
an automatic redirect (this
is not as easy as it might
seem). The system must
also inform several online

entities about each malicious URL and prepare a product
update for the customers.

This paper will explain how such an automated system was
created and how its results are used.

THE ENTRY POINT
As mentioned, emails are collected in spam traps – mail
boxes that have been set up for the sole purpose of
collecting spam and which no-one uses for genuine
incoming or outgoing email. By using these spam traps we
can be certain that the email collected is spam – there is
no real person behind the inbox to say ‘I did opt to receive
an email from company X, but not from company Y’.
Removing the human factor gives us the most secure way
of being able to say that a message is unsolicited.

We gather emails from spam traps hosted by mail servers all
over the world, giving us an almost global overview of the
spam activity in any 24 hours around the planet (see Figure
2). Interestingly, even though we receive emails from many
areas around the world, and we sometimes see outbreaks
in German, Italian, Spanish, Romanian and others, the vast
majority of phishing emails are in English.

With a fi nite number of domains seen in the phishing
emails, we can also produce statistics about which
brands have been targeted and for how long (see Figures
3a and 3b).

Our anti-spam product can differentiate between the
targeted phishing domains and extract the URLs from the

Figure 2: World phishing statistics [2].

Figure 3a: Targeted brands for 7 days [3].

Figure 3b: Targeted brands for 30 days [4].

SPAM BULLETIN www.virusbtn.com

MAY 2008 S3

emails, so we store this information for further analysis
if the content of the website to which the URL points
matches the content extracted from the email. This is just
another measure to check for false positives and website
availability.

FILTERING URLS

‘To be’ or ‘not to be’?
When we fi rst started to develop this anti-phishing
system, we created a simple Perl script that launched an
external program to test the URLs. If the return value of
the program was 0, the website was live; if it was 1, the
website was not valid.

However, we soon realized that even though many of the
websites were no longer online, the ISPs hosting them were
not always returning a simple ‘404 - Page not found’ error,
but instead a page containing some form of explanation
such as:

- ‘website not found any more, contact the webmaster’
(the page was simply deleted)

- ‘website is available for renting’

- ‘website is no longer valid because it contained a
dangerous page’ (contravening the EULA results in
automatic deletion)

Alternatively, the URL would be redirected to another
website (often the home page of the ISP).

Filtering these special cases would have been a lot easier
had all the ISPs used English. The messages were in various

languages depending on the ISP’s country of origin, which
meant that not all of them could be parsed.

A good idea for handling these pages would be to train a
Bayesian fi lter with the words commonly found in such
pages in order to be able to classify them automatically
in the future. The fi lter could be trained with the HTML
pages without interpreting them. This would mean that
we would have to train with plain HTML and JavaScript
code, teaching the classifi er to ‘learn’ the techniques this
way. This classifi er would suffer from the same problems
as suffered by all Bayesian fi lters: trained only with one
type of input it will tend to detect more of that input than
anything else. This project is currently being investigated.

Fortunately, after analysing some of the substituted web
pages, we fi gured out that there are several common
keywords, many of which are international. We are able to
fi lter about 60% of these pages using the keywords.

Follow the clicker
Even though it is a rather uncommon practice to track
each user who clicks on a link, we have seen phishing
attacks which were probably intended to be a form of spear
phishing (targeted phishing attacks). Each time we notice
a URL that has a rather long and randomized parameter
at the end, we cut it and we block the entire path up to
that parameter. This way, we make sure that all possible
combinations of the URL will be blocked.

For example, a long URL like this:
http://s.om.e...d.o.m.a.i.n.net/path/anfang.asp?id=0
0784569835186768103831640983103176479345423115553734

50305078216

is truncated to this:
http://s.om.e...d.o.m.a.i.n.net/path/anfang.asp

and the entire path is blocked to make sure that
access is denied to any possible URL combination.

THE GREY AREA: PHISHING AND
MALWARE WEBSITES
The system described does not have any AV scanning
capabilities, so there are routines in place that fi lter
from the outset any URL whose target is obviously
a binary fi le, which usually proves to be a piece of
malware (dropper, trojan, etc.).

Most of the phishing websites we see are ‘classic’
phishing sites (i.e. they imitate the site of a
well-known brand and try to steal credentials), but
occasionally they also attempt to download a piece of
malware in the background. The websites that attempt

Figure 4: Returns ‘404 Page not found’ code – OK.

Figure 5: Returns either a ‘302 Found’ and/or ‘200 OK’ code and a
page with some text – not OK.

SPAM BULLETIN www.virusbtn.com

MAY 2008S4

to do this are in a ‘grey’ area that crosses over between
malware and phishing. I have seen only two methods used for
downloading the malware: via client-side code (JavaScript)
or server-interpreted code like PHP or ASP. A link to such a
website looks suspicious from the start:
http://www.google.com/pagead/iclk?sa=l&ai=trailhead&
num=69803&adurl=http://some-phishing-website/
download.php

There are many possible variations where a background
action starts the download:
http://www.google.com/pagead/iclk?sa=l&ai=trailhead&
num=69803&adurl=http://www.some-phishing-website.com

Since the analysis system deals only with phishing and
not with malware, the only thing that can be done here
is to follow the fi nal target and if the content received is
binary, discard it, thus protecting the user from a potentially
dangerous download.
Result: HTTP/1.1 200 OK

Connection: close

Date: Sun, 03 Feb 2008 22:48:29 GMT

Accept-Ranges: bytes

ETag: “86820f-a200-47a510d4”

Server: Apache/1.3.37 (Unix) mod_ssl/2.8.28 OpenSSL/
0.9.7a PHP/4.4.7 mod_perl/1.29 FrontPage/5.0.2.2510

Content-Length: 41472

Content-Type: application/octet-stream

Last-Modifi ed: Sun, 03 Feb 2008 00:54:44 GMT

Client-Date: Sun, 03 Feb 2008 22:43:07 GMT

SEARCH ENGINE REDIRECTS
The use of the Google PageAds as seen in the above
example is another technique used by phishers. In general,
using a search engine to redirect to a website must be seen
as a suspicious action:
http://google.com/url?sa=p&pref=ig&pval=2&q=
http://www.phishing-site.com

http://rds.yahoo.com/_ylt=
http://www.phishing-site.com

http://aolsearch.aol.com/aol/
redir?clickeditemurn=
http://www.phishing-website.com

(Note: the above URLs are
simplifi ed. Additional parameters
have been removed for the sake of
simplicity.)

REFRESHING
More and more phishing websites
are making use of botnets to

redirect browsers from one URL to another without the user
noticing.

This technique can be achieved using the HTTP Refresh or
JavaScript code:
<script language=javascript>

top.location=”http://www.phishing-website.com”;

</script>

The same effect can be obtained with window.location.

Another technique is to use plain HTTP code to refresh the
website to another location after an interval:
<head>

<meta http-equiv=”refresh” content=”0;
url=http://www.phishing-website.com“ />

</head>

The situation becomes interesting when there is a redirect
chain through the botnet. The maximum length of redirect
chain we detected was four hosts.

There is a danger that these websites will form a loop,
either on purpose or by mistake. In this case the parsing
module of the system would enter into an endless loop and
would have to be interrupted manually. To avoid this we
added a maximum recursion limit of 25 redirects.

Another technique seen in the wild is to use a rotating
refresh. This uses the same technique as the simple
HTML refresh, but mixed with JavaScript code in order
to self-generate the HTML document. Such a technique
of making the website really dynamic could be called
‘polymorphic phishing’ if we borrowed the terminology
from malware.

Figure 6 shows some rotating refresh code. Simple
analysis of this code shows that every fi ve seconds a new
page containing a refresh URL is being generated. The
page is refreshed after three seconds, which is way too
often.

All the intermediary websites used to reach the fi nal
phishing website are saved in our database, regardless of

Figure 6: Rotating refresh.

SPAM BULLETIN www.virusbtn.com

MAY 2008 S5

the method used. This way we make sure that nothing gets
changed in the redirect chain, up to the fi nal website.

FLASHING
In June 2006 we saw an entire phishing website written in
Flash. A 250 Kb Flash fi le called login.swf was referred to
by a simple website like this:
<object classid=”clsid:D27CDB6E-AE6D-11cf-
96B8-444553540000” codebase=”http://download.
macromedia.com/pub/shockwave/cabs/fl ash/swfl ash.
cab#version=4,0,2,0” id=”login” height=”1280”
width=”979”>

 <param name=”movie” value=”login.swf”>

 <param name=”bgcolor” value=”#FFFFFF”>

 <param name=”quality” value=”high”>

 <param name=”allowscriptaccess” value=”samedomain”>

 <embed type=”application/x-shockwave-fl ash”
pluginspage=”http://www.macromedia.com/go/
getfl ashplayer” name=”login” src=”login_fi les/
login.swf” bgcolor=”#FFFFFF” quality=”high”
swliveconnect=”true” allowscriptaccess=”samedomain”
height=”1280” width=”979”>

</object>

The only way to detect such a website is by parsing the
object and analysing the original URL. Of course, this
technique is very error prone.

FRAMING
The last and by far the most commonly used technique
is to use HTML frames as the entry point in the phishing
website. As many as possible are used and in as complicated
a way (nested) as possible. But frames can be parsed
relatively easily, and this is why we seldom see techniques
just using plain frames. They are used together with all the
above techniques in order to make parsing as complicated
as possible. Also, it seems that the phishers have taken into
consideration browsers which do not support frames. Some

websites we’ve seen have used JavaScript code to handle
this kind of browser.

The solution against this technique is to act as a browser
and dive into the frame structure. Of course, this makes
everything a lot more complicated because it is not
trivial to implement an HTML and JavaScript interpreter
in Perl.

CONCLUSIONS

All of the above techniques and various combinations of
them have been seen in real phishing websites. Creating
a validation mechanism for these URLs is not an easy
task. When a URL is found, the system has to check if
the target website is a real phishing site, an automatic
response because the website has been taken down or a
false positive. This proves that the fraudsters are no longer
script kiddies but knowledgeable developers keen to make
a lot of money.

The URL analysis system described in this article is
currently maintained semi-manually. The phishing URLs
are gathered by a fully automated system, but the analysis
of the hyperlinks cannot be fully automated. As in the case
of malware analysis, human input is a vital factor, whether
that is performing a manual check to see if the system’s
decision is correct or upgrading the automatic detection
logic. Of course, in the long term, only the latter option
is viable, since the unique URLs arrive in their hundreds
per month.

The purpose of this system is to determine if the phishing
URLs are valid, so that the invalid ones can be discarded
before they reach the end users’ fi ltering mechanisms.
This way we can minimize the size of the product
updates. Unfortunately, in recent weeks the number
of phishing URLs has increased to such a level that it
is no longer possible to check every URL at the entry
point if we are to deliver the updates in a timely manner.
Currently, only basic tests are performed, mostly to
prevent the blocking of the ISPs that substitute the ‘404’
error with other pages.

REFERENCES
[1] http://www.avira.com/en/threats/section/

worldphishing/top/30/index.html.

[2] http://www.avira.com/en/threats/section/phishing/
top/7/index.html.

[3] http://www.avira.com/en/threats/section/phishing/
top/30/index.html.

[4] http://www.faqs.org/rfcs/rfc2616.html.

http://www.avira.com/en/threats/section/worldphishing/top/30/index.html
http://www.avira.com/en/threats/section/phishing/top/7/index.html
http://www.avira.com/en/threats/section/phishing/top/30/index.html
http://www.faqs.org/rfcs/rfc2616.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

