the international bank of knowledge

ARTeam eZine Issue III rev.1

I .‘

o e Lty
s E
]

“.-i

v

5

Y

o

I.lml.lwn;a—
R .
— ;.. .- ‘
-

COOE INJECTION - 1CLICKDVDCORYRROBY EONDZERD
fhRANYDVD VB3 8 BY CONDZERT
PATCHING RRIMA EGOIDES (SINGLEBYTE PATCHING) BY SSLEVIN
EXAMDIFF blxxx REVERSING THE PROTECTION SCHEMA'BY SHUB-NIGURRATH
| VERSINIitUSINES& TRANSCATORS OO BY KAIRA

~EXECRYPTOR FOR DIIMMIES OR HOW O INPACKEXECRYPTOR 2.4
- WITHOUT HAVING A GLUE WHATOUAREDOING BY HAGGAR

i | R I[ll]LSMALKTHflﬂUGH OF KEY CHECK ROUTINE BY ANHSIRK
HE STRANGE CASE OF DBE_PRINTEXCERTION 5 DA IRIPEXCEPTION BY MOID

r. el
MR SRS LT

; L‘iﬁg@ FOR FUN Y ARJL |
WRITING A SELF-KEYBENERATOR LOAOER WITH ABELBY MISCAGF ‘{R‘;(,

| CONTENT RATED BY

{ARTeam |
TR

RRTEAM EZINE ISSUE (I}

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

TABLE OF CONTENTS

FOREWORDS 5
Disclaimer 6
Supplements 6
Verification 6
1 CODE INJECTION - 1CLICKDVDCOPYPRO BY CONDZERO 7
1.1 Introduction 7
1.2 Abstract 7
2 MUP ANYDVD V6.1.3.6 BY CONDZERO 13
2.1 Introduction 13
2.2 MUP AnyDVD v6.1.3.6 13
3 PATCHING PRIMA EGUIDES (SINGLE BYTE PATCHING) BY SSLEVIN 24
3.1 Introduction 24
3.2 Patching Prima eGuides 24
33 Inspecting the target 24
3.4 Finding patch(es) 26
3.5 Conclusions 28

4 EXAMDIFF 4. XXX REVERSING THE PROTECTION SCHEMA BY SHUB-NIGURRATH 29

4.1 Introduction 29
4.2 Approaching the enemy 29
4.3 Reversing the registration schema 30
4.4 Testing whole thing & Conclusions 36
5 REVERSING BUSINESS TRANSLATOR 9.00 BY KAIRA 37
5.1 Introduction 37
5.2 Approaching the Enemy 38
5.3 Conclusion 43

6 EXECRYPTOR FOR DUMMIES OR HOW TO UNPACK EXECRYPTOR 2.4 WITHOUT

HAVING A CLUE WHAT YOU ARE DOING BY HAGGAR 44
6.1 Introduction 44
6.2 Content 44
6.3 [1] Requirements for this guide 44
6.4 [2] Preparations before loading target in Olly 45

Forewords

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

6.5 [3] Loading target in Olly 46
6.6 [4] Using script to kill anti-debug tricks 46
6.7 [5] Finding OEP a7
6.8 [6] Using script to decrypt imports 50
6.9 [7] Dumping to hard disc 50
6.10 [9] Reference material 51
6.11 ScriptS 51
7 OCRTOOLS WALKTHROUGH OF KEY CHECK ROUTINE BY ANHS!RK 52
7.1 Introduction 52
7.2 Tool Required 52
7.3 Walkthrough 52

8 THE STRANGE CASE OF DBG_PRINTEXCEPTION_C & DBG_RIPEXCEPTION BY MOID 62

8.1 Introduction 62
8.2 Trick description 62
8.3 Thecause 63
8.4 The solution 64
8.5 References 66
9 CRACKING FOR FUN BY ARJUNS 67
9.1 Some Theories 67
9.2 Diving into the scene 68
10 WRITING A SELF-KEYGENERATOR LOADER WITH ABEL BY M1SCH13F 71
71
72
76
80

Forewords

ARTEAMIEZINE ISSUE IN

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

FOREWORDS

Hi all finally we had time to complete the long

AiTeam

awaited issue Il of our eZine. It has been a long wait
we know, but real life things kept me busy and far
from editing this eZine. It's not an easy thing to
collect, select and assembles all the contributions.
Nevertheless | hope this issue will be at the same

quality level of past issues.

As you can see there’s a new look, thanks also to some graphics done by Gunther, which resembles more
professional and clear.

This is a special issue, because most of its papers are tied to specific programs. | always try not to tie tutorials
to specific targets, because the tutorial otherwise follows the destiny of the program, becoming rapidly
obsolete or being too much specific, and also because is less “legal”. Each time | do a tutorial the first thing |
ask myself is which is the added value | am going to share with readers or, better, will | be Original?

| obviously can only speak for myself: to answer this question | often start from the reasons that bring me to
reversing that specific program. It’s not just for doing another crack or to release a program before others,
because we are out of these businesses (which btw free us from the Odays logics and races). For my own
purposes it’'s always easier to ask for a specific target or just access to Oday repositories: | always can find the
programs | need. Then the reason lies behind some program’s characteristics, some lessons | learnt that | want
to share with someone, either developers or crackers.

This Issue has a lot of target specific tutorials which are often tied to program which have already been
updated meanwhile; on the one hand this is a good thing because frees you from the urgency of reading the
tutorial just as a longer way to have a crack, on the other hand you cannot directly test the steps, because the
target isn’t anymore available (but you can ask us). Anyway what | think is good is that you are free to
understand the method and the underlying logic most reading the only thing you have, the tutorial.

The targets we used are then just an excuse to do something interesting by the reversers’ point of view. The
lessons learnt are underlined, but are not limited to what you are reading. Depending if you are a developer or
a cracker you might draw your conclusions about how effective are some common behaviour when
programming protections.

Anyway what you will do with this document is totally up to you; just remember that, within the trial period,
you can do what you want with the programs, after trial expires you should consider removing or buying..

Editor's Note: Reason for this rev.1 is that previously | forgot to insert two contributions from MOID

and M1SCH13F. Now they are restored..

Your Favourite Neighbourhood Shubby

Forewords

RRTEAM EZINE ISSUE (I}

ARTEAM EZINE ISSUE 11l REV.1

AiTeam

I Reversing : I'm just'doing my hobby]

DISCLAIMER

All code included with this tutorial is free to use and modify; we only ask that you mention where you found it.
This eZine is also free to distribute in its current unaltered form, with all the included supplements.

All the commercial programs used within the different papers have been used only for the purpose of
demonstrating the theories and methods described. No distribution of patched applications has been done
under any media or host. The applications used were most of the times already been patched by other
fellows, and cracked versions were available since a lot of time. ARTeam or the authors of the papers
shouldn’t be considered responsible for damages to the companies holding rights on those programs. The
scope of this eZine as well as any other ARTeam tutorial is of sharing knowledge and teaching how to patch
applications, how to bypass protections and generally speaking how to improve the RCE art. We are not

releasing any cracked application.

SUPPLEMENTS

This eZine is distributed with Supplements for each paper; the supplements are stored in folders with the same
title of the paper. Almost all the papers have supplements, check it.

VERIFICATION

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all files have been released by ARTeam and
are unaltered. The ARTeamESFVChecker can be obtained in the release section of the ARTeam site:

http://releases.accessroot.com

http://releases.accessroot.com/

RRTEAM EZINE ISSUE (I}
ARTEAM EZINE ISSUE 11l REV.1

AiTeam

I Reversing : I'm just'doing my hobby]

1 CODE INJECTION — 1CLICKDVDCOPYPRO BY CONDZERO

1.1 INTRODUCTION

1 Click DVD Copy Technology Software Reviews 2007 reviewed the Top 10 DVD Copy Software Products that
produce copies of DVD movies employing "1Click" technology and processing of DVD movie duplication and
awarded 1Click DVD Copy Pro version 2.4.1.8 as clearly the more superior product. After our evaluation, we
feel at the present time that it sets the standard for all DVD copy software applications. After careful
examination one will discover that this is because it's feature set and proprietary CPRX technology that makes
it possible to copy virtually any DVD in circulation. Something the other DVD movie copy software applications
cannot confidently claim. With 1Click DVD Copy Pro, the user has more control over the finished DVD movie

product.

In the ARTEAM EZine #2, | showed you how to inject code to mark the sister product application
1ClickDVDCopy 5 as registered. In this short tutorial, | will demonstrate the same principle for marking the pro
version as registered. Note: This application is protected by AcProtect / UltraProtect. Don’t bother with the
AcStripper program on this application. It won’t help you. This article demonstrates why a reverser sometimes
needs to dig into their bag of tools and find another more convenient way to patch an application. Also note
that this application has one annoying feature (see below):

1Click DVD Copy PRO

@ Your display settings are non standard.
Please set vour display to "Normal Size (96 DPI)".

Figure 1

1Click DVD Copy - Pro requires that you have your display resolution set to the default (Normal 96 DPI)
setting. Weird, but | guess the developer’s had no time for a more robust solution. So let’s reset our resolution
(if necessary) and move on, shall we.

1.2 ABSTRACT

This Tutorial will introduce you to a method necessary in injecting code into an application so that you can
further analyze the application beyond its trial limits. | show you one of the easiest methods in which to
accomplish this. Remember, timing is key when dealing with packed / protected targets that employ code
encryption and obfuscation.

Code Injection — 1ClickDVDCopyPro by CondZero

http://www.1clickdvd-copy.com/review_1clickdvdcopy-pro.htm
http://www.1clickdvd-copy.com/cprx.html
http://www.1clickdvd-copy.com/review_1clickdvdcopy-pro.htm

ARTEAM EZINE ISSUE 1Y
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

1.2.1 TARGET
The target is an application called 1CLICK DVD COPY PRO. You can get it at the link below:

Download

1.2.2 PREPARATION
Tools used: OllyDbg v1.10, OllyAdvanced v1.26 Beta 10 for WinNT.

Since | have had some experience with a similar application before, | simply check all the exceptions and for
Events | check off Break on new module (DLL) see below:

&= Debugging options [?J

Commands | Disasm | CPU | Registers | Stack | Anabeiz1 | Analesis 2 | Anapsis 3 |
Secuity | Debug Events | Exceptions | Tisce | SFX | Stings | Addesses |

Maks st pouse at:
™ System beeakpoint
% Entrp poird. of main moduls
" Wirid ain (i location is known)

¥ Break on new module [DLL]

I Bresk on module [OLL] unlosdng
[™ Break on new thesd

[™ Break on thiead end

[~ Break on debug sting

kil [0k | undo | Cancel

Figure 2

51.2.2.1 CHECKING OUT THE TARGET

We first open our target in Olly. Don’t bother analyzing it at this point. It's compressed and encrypted. We
simply hit F9 and run our target and wait for the DLL load events to occur. In our previous Ezine, | reported a
dll: vso_hwe.dll that could be used to inject our code. The pro version offers us another option (dll) which we
are going to use.

Entry Point Alert

) Maodule “soVprey' has entry point cutside the code (as specified in the PE header). Maybe this file s self-extracting or seif-modifying. Please

keep it in mind when satting breakpoints!

Figure 3

Press OK. Go into the executable modules screen in Olly as shown below:

Code Injection — 1ClickDVDCopyPro by CondZero _

http://www.lgsoftwareinnovations.com/download.asp

ARTEAM EZINE ISSUE 1Y
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

- [Executable modules]
[E] File View Debug Plugins Options Window Help

(@] x] wju] s+ ¥4 o < u]EmT|wE[c| s K|BIR]..]s] =[F]?]
—

Size Entry Hame File version Fath
00400000| 004A2000| 00883000| 1ClickDv|2.4.1.8 C:“FProgram Files LG Software Innowations~1Click DVD Copy Pro~lClickDwdCopyFro. exe
00030000 00140000 00EODDL10| veo_hwe |2.0.22. 272 C:“FProgram FilesLG Software Innovations~1Click DVD Copy Prowso_hwe dll
02110000| 0007D000| 021729F8| ¥soVprew|1.1.3.20 C:“Program Files:LG Software Innovations™1Click IND Copy FronWsoVprev. ax
Figure 4

Notice our dll of choice: VsoVprev.ax is highlighted in Red. Notice also its extension .ax, not usual for a dll. We
want to follow this entry, so right click on this line and select follow entry as shown below:

- [Executable modules]
[E] File View Debug Plugin: Optins Window Help

@ ex| wn| we 30y) = u]E(m]T|wE]c| s k|8 R] 5] =2
s

Size Entry Hame File version Path
00400000 | 00442000 00883000 | 1ClickDv|2.4.1.8 C:“Program Files“LG Softvare Innovations“1Click DVD Copy Pron1ClickDvdCopyPro.exe
00D30000| 00140000| DDEODDL0| veo_hwa |2.0.22 272 C:“Program Files-LG Sof tware Innovations~1Click DVD Copy Prowso_hwe dll
02110000| 00070000(021729F8| VsoVpzrew|1.1.3.20 C:~Program Files“LG Scftware Innovations“1Click DVD Copy Pro“VsoVprev.ax
Figure 5

Notice we have plenty of “goose eggs” for injecting code via a code cave (see below):

- [CPU - main thread, module VsoVprev]
B o2 Vi Db - PRgIns: [OpGnG: Window - 1l

Sjx| »in| wisy ¥4] < L E|mjTiwiajclz KB R]
7 (EB 36 JHP SHORT VsoVprev 02172430
021729FA| | 90 NOP
| | 83C4 cd ADD ESP,-3C
B8 D8OF1702 MOV EAX.VsoVprev, K 02170FD8
E8 DO3EFAFF | CALL VsoVprev 021168D8
E8 231CFAFF CALL VsoVprev. 02114630
8D40 00 LEA EAX,DVORD PTR DS:[EAX]
0000 ADD BYTE PTR DS [EAX].AL
0000 ADD BYTE PTR DS:([EAX].AL
0000 ADD BYTE PTR DS:[EAX].AL
0000 ADD BYTE PTR DS:[EAX].AL
0000 ADD BYTE PTR DS:[EAX].AL
0000 ADD BYTE PTR DS:[EAX],AL
0000 ADD BYTE PTR DS:[EAX].AL
0000 ADD BYTE PTR DS:([EAX].AL
0000 ADD BYTE PTR DS:[EAX].AL
0000 ADD BYTE PTR DS:[EAX].AL
0000 ADD BYTE PTR DS:[EAX].AL
0000 ADD BYTE PTR DS:[EAX].AL
0000 ADD BYTE PTR DS:[EAX].AL
0000 ADD BYTE PTR DS:[EAX].AL
c| |oooo ADD BYTE PTR DS:[EAX].AL
02172A2E| | 0000 ADD BYTE PTR DS:([EAX].AL
Figure 6

Code Injection — 1ClickDVDCopyPro by CondZero _

RRTEAM EZINE ISSUE (I}

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AiTeam

51.2.2.2 ANALYZING THE TARGET

So why have we chosen a dll to inject our code? Timing of the dll entry in relation to the necessary decryption
of the code section of interest to occur, and probably most important, the ease in which the process of
patching can be implemented. From our previous EZine, the literal we are most interested in is shown below
from Olly’s memory map:

- [Dump - 1ClickDv:CODE 00401000..0057BFFF]

@ File Wiew Debug Flugins Options Window Help

Blx| »lu| wijv| 1 W] + L|E|M[T|w/H[c|[/|K|B|R|..|5]| E[E

OOSEDCEC| 08 00 00 0053 65 74 74 89 gE &7 73 00 00 00 0OQ)Q...Setting=. ...
Figure 7

In some cases an application may push this value, but in this application, it moves this value to register ECX.
There’s a function that is interrogated (run) twice which checks for a valid registration. If a valid registration is
found, the function returns EAX == 1, otherwise, invalid registration is EAX == 0. Our goal is to patch this
function to always return EAX == 1. The function we are interested can be found by setting a HWBP on access
(DWORD) on the address: 0055DC5C shown above. After doing so we can run our target (F9) and we will
eventually break on our memory address. We must now look deep into the stack to find the function, or in this
case, a return address within the function, shown below:

Addre=s | Value Comment

0012FAS0|| O041EBCE| RETURN to 1ClickDwy 0041EBCE from 1ClickDw 0041DFF4
O012FA54 || 00419BFC| 1ClickDw 00419BFC

O012FASS|| 00S5DCP0| ASCIT "Settings"

O012FASC|| 00426ERC| ASCIT "ByB"

O012FA60|| 0042754F | RETURN to 1ClickDwv 0042754F

0012FAR4|] 0012FABC| Pointer to next SEH record

O012F4658|| 00427564| SE handler

O012FA6C|| O012FAB4
O012FA70(| 01793034
O012FA74 || 00426E6C| ASCIT "8yB"
O012FA78 (] 0174BCH0
O012FA7C|| oooooQon
O012FAB0|] 0055DCEC| ASCII "SerialCode"
N012FAB4| _0012FAAR
0012FAB8 || 00S5DEGE| RETURH to 1ClickDwy OO0SSDEGE
0012FABC|] 0012FABO| Pointer to next SEH record

O012FA90(|| 0055DC44| SE handler
oodoraodll nodioFaAsD

Figure 8

Our reference to “SerialCode” address: 0055DC5C is displayed more than once in the stack, but we are
interested in the first instance. If we follow return address: 0055DB6E above in the disassembler we are in the
main registration function. Scroll to the top of this procedure as shown below:

Code Injection — 1ClickDVDCopyPro by CondZero

RRTEAM EZINE ISSUE (I

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

0055DE40 55 PUSH EEF

O0SEDE41 SEEC MOV EEF.ESP

00550E43 64 00 PUSH 0

0055DE45 64 00 PUSH 0

O0SEDE47 £3 FUSH EEX

0055DE48 Se FUSH ESI

0055DE49 8BF0 MOV ESI EAX

0055DE4E 33C0 HOR EAX EAX

0055DE4D 55 FUSH EEP

0055DB4E 63 44DC5500 PUSH 1ClickDw. 0055DC44

0055DE53 64:FF30 PUSH DWORD PTR FS: [EAX]

0055DES6 64:8920 MOV DWORD PTR FS:[EAX].ESP

0055DE59 B9 SCDCS500 MOV ECX, 1ClickDw.0055DCSC ASCIT "SerialCode"
0055DBESE Ba 70DC5500 MOV EDX. 1ClickDw. 0055DC70 ASCIT "Settings"

Figure 9

The Red highlighted instructions above are those which will be changed by our code injection. When this
procedure returns (after our patch), register EAX will equal ‘1” and the subsequent test for validation shown
below:

00569466 ES DS46FFFF CALL 1ClickDw 0055DB40

a4cn TEST AL, AL
005e%94cD|, 0F85 5D0O10000 |JWHZ 1ClickDs . 00569500
O05E947 3 8B45 D8 MoV EAX, DWORD PTRE S5:[EBP-28]
Figure 10

EAX should equal 1 at address 0056946B shown above. So on to our task to inject some code.

51.2.2.3 INJECTING OUR CODE

We know the function to be patched. We also know by what means to patch it (inject our code). We will rerun
the application again, wait for our dll of interest (VsoVprev.ax) and make the following changes. Note: Refer to
figure 6 for the “Before” image.

021729F8 |, EBE 38 JHP SHORT V=oVprew 02172430

021729FA 90 HOP

021729FB 83C4 C4 ADD ESP.-3C

021729FE| | B8 DEOF1702 MOV EAX, Vs=oWprev. 02170FDS
Figure 11

Changes highlighted in grey, above. We now jump to our cave, noting the instructions we have altered which
must be saved and reexecuted upon return:

Code Injection — 1ClickDVDCopyPro by CondZero

RRTEAM EZINE ISSUE (I

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

02172430 60 PUSHAD

02172431 9C PUSHED

DE172432 EE 40DBESS00 MOV ESI.SSDE40

02172437 36:8D3E LE4 EDI.DWORD FTR 55:[ESI]

02172434 36:C707 33C040C3 MOV DWOED PTR S5:[EDI].C340C033

02172441 9D POFFD

02172442 61 POPAD

02172443 5% PUSH EEP

02172444 SBEC MOV EEFP.ESP

02172446|" EB B3 JHF SHORT V=oVprewv. 021729FB
Figure 12

Here we save our registers and flags. We move the beginning address of our registration function from figure 9
to register ESI so we can perform some changes. We load this address to register EDI and move the following
sequence of instructions:

33C0 HCOR EAX EAX
O055DE42 40 INC EAX
0055DE43 C3 RETH
Figure 13

Note: That the value of register EAX upon return will equal ‘1’. We then execute our saved instructions and
return to the next instruction of the dIl. Remember to right click and save to our executable the (2) selections
noted in figures 11 and 12 above. We save these changes to a new executable (dll in this case:
VsoVprev_new.ax). We can then rename the original dll and rename our saved dll to the original. We are now
ready to test our code injection.

Restart the target with no HWBP’s or any Events checked in Olly. | won’t show the screen, but it runs good,
doesn't it.

11.2.2.4 CONCLUSIONS

Well, we showed you one way in which to inject code into a packed / encrypted executable to accomplish our
goals. DII’s can be your friend in many cases. | hope you learned something new.

Code Injection — 1ClickDVDCopyPro by CondZero

RRTEAM EZINE ISSUE (I}
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

2 MUP ANYDVD V6.1.3.6 BY CONDZERO

2.1 INTRODUCTION

AnyDVD is a Windows-based driver that works automatically in the background to unprotect encrypted movie
DVDs. This popular software is the subject of many RCE forums. Most of the “cracks” you will see posted
revolve around a “Well Known” serial code or a “patch + keygen” fix. | thought it might be interesting to
produce a Tutorial that analyzes the limitations and walks through some of the methods to obtain “serial
code” functionality without external help.

Peid shows us the type of protection below:

yoda's Protector v1.02b-> Ashkhiz Danehkar [Overlay] *

There’s a fairly straightforward method to finding the OEP, dumping and fixing the IAT, analyzing the
application and finally to patch which will be shown in this tutorial. | am not going in-depth on the protection
system. Also note that an additional upgrade is available for this application with additional features for full
HD-DVD (High Definition DVD) and Blu-Ray support, including decryption of HD-DVD & Blu-Ray movie discs. Ill
point out some steps needed to gain access to this functionality. If you are well versed with the tools described
in Setup (below), than you should have no problem following along. With this in mind, let’s move on.

2.2 MUP ANYDVD V6.1.3.6

2.2.1 TARGET

You can get it at this link: SlySoft Products | Copy Movie DVDs with AnyDVD and CloneDVD

2.2.2 SETUP

Tools used: OllyDbg v1.10, PETOOLS v.1.5.800.2006 RC7, ImpRec v1.6.

2.2.3 CHECKING OUT THE TARGET AND FINDING THE OEP

We first open our target in Olly. Olly warns us immediately that our entry point is outside the code and that
our application maybe compressed. You don’t need to analyze at this point. Simply go to Olly’s [Executable
modules] window and right click on kernel32 > view names. We are looking for the GetModuleHandleA API.
Find it and follow it in the disassembler and either set a HWBP on execute or F2 breakpoint on the beginning of
this API. Now you can run [F9] the target in Olly. You will break on this API after a very short while. Now we
can go into Olly’s [Memory Map] window. Find the code section beginning at address: 00401000 and set a
memory breakpoint on access. Run [F9] the target. We will break again on the GetModuleHandleA API. Run
[F9] again and we break on our OEP, see below:

MUP AnyDVD v6.1.3.6 by CondZero

http://www.slysoft.com/en/

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

6a 60 |PUSH 80

68 68BE4800 PUSH AnyDVD_o.0048BE68

E8 E92D0000 CALL AnyDVD_o.00478AF8

BF 94000000 MOV EDI, 94

8BC7 MOV EAX,EDI

E8 4S0A0000 CALL AnyDVD_o.00476760

8965 E8 MOV DWORD PTR SS:[EBP-18],ESP
8BF4 MOV ESI,ESP

893E MOV DWORD PTR DS:[ESI),EDI

S6 PUSH ESI

FF15 BC704800 CALL DWORD PTR DS:[4870BC] kernel32.GetVersionExA

Figure 14

2.2.4 DUMPING THE TARGET

| chose PETools for dumping the target. If we were to dump normally with LordPE, we would end up with a
small dump. Why? The sections are protected. With PETools, we can simply find our process and let it dump it
for us and we will get a complete dump. After dumping the target, we can fix the EP in the header to our OEP
from figure 1. Do not close the target at this point.

2.2.5 FIXING THE IAT

Fortunately with this version of Yoda’s protector, there are no emulated API’s or anything too strange. We can
simply fire up ImpRec on our target and find the process. For options, we are going to choose Create new IAT.
Enter the OEP as shown below and press IAT AutoSearch. ImpRec will return with the imports found message.
Press okay on this messagebox.

We can now press Get Imports. You will get back a screen that looks similar to the following:

IAT Infos needed New Import Infos (ID+ASCI+LOADER)
OEP [00075D03 | WTAuoSearch | = | Rya [00000000 Size [00000000
Fuva, [00087000 Size [000002F4 7 I e
Lom:le&I SweTrss| Get Impors || Foc Dump
Figure 15

Now we can simply press Show Invalid and a bunch of highlighted entries will appear. Right click on the
highlighted portion of Import Functions Found window and select Trace Level | (Disasm). You will be rewarded
with the Congratulatory message. Now we can select Fix Dump and point to our dumped file.

MUP AnyDVD v6.1.3.6 by CondZero

ARTEAM EZINE ISSUE 1Y
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AiTeam

2.2.6 ANALYZING & PATCHING THE TARGET

Before we do anything else, it is important that we rename the original target name to something else, and
rename our new fixed dump to the original. The important considerations are the time limitation, the nag
screen, and the inability to save settings. One more thing. The application behaves similar to Armadillo’s father
/ child protection in that it sets an event, checks for its existence and starts a new process with an argument
string. We can temporarily disable this mechanism so as to analyze a single process without the need to attach
to a new one. In order to do this we can let Olly analyze our new dump (if not already done) and in Olly’s code
window, right click and select > Search for > All intermodular calls. Find the CreateProcessA Call and double
click on it and set a breakpoint [F2]. Run [F9] our target to this BP. Look at the stack window and notice the
argument passed on the CommandLine below:

Address |Value Comment.

00000000 | ModuleFilelame = NULL
001 | DDLZFBSE(| Co ""C:nProgram Files“SlySoft AnyIVDAnyDVD.exe" 20070413225054"
ool 00000000 it HULL
001 00oooo000 HULL
ool 0ooooooo FALSE
an1 00000000 0
001 oo0oooooo|] p ir n HULL
001 00000000(] Cux HULL
[a[eB! 0012FB14 OD12FE14
ool 0012FBO4 |Lp! 0012FED4

Figure 16

Without a great deal of effort, we can see a date string (release date) and perhaps a productid appended to it.
The application wants this argument “stamp” in order to run. We can simply copy this string to our clipboard
and paste it into Olly’s > Debug (menu item) > Arguments as shown below:

Change arguments of executa... fg|

Executable Ay OVD

Commend line 2070413225054]|

ok | cancel |

Figure 17

Press OK. Olly will ask you to restart the application. Hold off on this for a moment. We should still be at the
BP. Go into Olly’s [Call stack of main thread] window and select the first CALL highlighted below:

Address |St.nch: IPmcadura 4 arguments Ical led from Im:la
0012FD64 0043594EJMVD\'D.004365?D |AnyDVD. 00436943 |
0012FE9C| 0D475EB7 | AnyDVD . 00436740 AnyDVD .0D0475E82

Figure 18

MUP AnyDVD v6.1.3.6 by CondZero

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

Double click on this line and you will be here:

.. OF84 D2000000 JE AnyDVD.00436A06
. FFD3 CALL EBX <Ekernel32.#361>
3D B7000000 CMP EAX,0B7
- 74 27 JE SHORT AnyDVD.D0436964
6B 3C8C4900 PUSH AnyDVD.00498C3C ASCII "20070413225054"
6B 386D4E00 PUSH AnyDVD.004BED38 ASCII "C:»Program Files“SlySoft AnyDVD
. 33F6 XOR ESILESI
00436949 . EB 22FCFFFF CALL AnyDVD.0D0436570 |
0043694E| . B3C4 08 ADD ESP.8
68 10270000 BUSH 2710 10000, ms
57 PUSH EDI [je
FF15 70EDS000 CALL DWORD PTR DS: [<Skernel32.#891:] waitForSingleOhject

Figure 19

The CALL highlighted above at address: 00436949 is for the CreateProcessA APl. More importantly is the
instruction at address: 00436936 above. There is a call immediately above it for (ntdll.RtlIGetLastWin32Error)
and is looking to compare the result with “B7” or message “Already exists”. Set a BP on this address. Now we
can go ahead and Restart [Ctrl + F2] the application. When we come to our BP we can modify the code as

follows:
FFD3 CALL EBX <Skernel32.#361>
B8 B7000000 MOV EAX,0B7
0043693B| . EB 27 JMP SHORT AnyDVD.00436964
1043693D| . 68 3CBC4900 PUSH AnyDVD.00498C3C ASCII "20070413225054"
00436942| . 68 386D4B0O | PUSH AnyDVD.004B6D38 ASCII "C:\Program Files
Figure 20

Now we don’t have to be bothered with attaching to a new process. We will need to apply the code above
each and every time we restart the application. We also will need the argument string in Olly.

52.2.6.1 TIME LIMITATION - EXPIRATION

The next order of business is the trial limitation nag screen. The application checks if we have a valid “Key” and
Serial code. The CALL address highlighted below leads to the functionality that determines if we have a valid
registration key. Step into this function for all the details.

$ 51 PUSH ECX
68 08854B00 PUSH AnyDVD.004B8506
68 966A4900 PUSH AnyDVD.00496A56
68 186A4900 PUSH AnyDVD.00496A18
68 SB764A00 PUSH AnyDVD.004AT76E5E
68 D0904900 PUSH AnyDVD.004990D0 ASCII “AnyDVD"
68 F4964900 PUSH AnyDVD.004996F4 ASCIT "SlySoft”
. A3 bB0D644B00 MOV DWORD FIR DS:[4B6460].EAX
. E8 37920300 |CA.T..L AnyDVD. 00469860
. B3C4 18 ADD ESP,18
B3SCO TEST EAX,.EAX
v 79 56 JNZ SHORT AnyDVD.00430986
A3 SCTB4A00 MOV DWORD FTR DS:[4ATBSC].EAX
. A3 EBBE4B00 MOV DWORD FTR DS:[4BGEES],ERX
» BAOD 0BES4B00 MOV CL.BYTE PTR DS:[4B8508]

Figure 21

MUP AnyDVD v6.1.3.6 by CondZero

RRTEAM EZINE ISSUE (I
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AiTeam

After returning from the CALL above is a TEST EAX,EAX condition which will normally be equal to ‘1. The
application will determine how much time is left of the 21 day trial. There are (3) key areas here. (1) is a
variable that stores the amount of time allowed. Another variable stores the time left. Notice above at
addresses: 00430930 and 00430935 are (2) global variables for this purpose. The first address stores the trial
period time. The 2" stores time left. Knowing this in advance, we can influence the decision mechanism by
moving some value to EAX that is greater than 0. We could simply NOP the TEST EAX,EAX condition and let EAX
== 1. Or, you could move some other register value > 0 to EAX, perhaps, as in my case, the value in register ESI
as shown below:

0043092C BBCE MOV E&X,ESI
0043092E 90 HOP
0043092F a0 HOP

On my machine this was equal to hex ‘Ox44’ or decimal 68 “days” left of a 68 day trial period because both
values will be the same.

12.2.6.2 NAG SCREEN

We can find the function for the nag screen. | cheated a little bit. | previewed the resources using PE Explorer.
The resources are normally stored in the AnyDialog.dll, but we will find the nag screen dialog in the main
module. In Olly’s [Memory map] window, view the resources section beginning at address: 004BC000, right
click on this line and choose > View all resources. Scan down to what maybe the last line shown below:

004C74C0(DIALOG 1B 0400 Process‘DDDElﬂllEE

In Olly’s code window we can search for > All commands the value “1B” being pushed in the program.

Find all commands

Olly will return a bunch. Select BP on every command for all found commands. Run the target. You will break
in the “nag screen” function. Scroll up a few lines and you’ll see the ascii literal warning about “...days left ...”,
etc.

Simply scroll to the top of this function and if you want, you can set a BP shown below:

Al BBE44B00 |MOV EAX,DWORD FTR DS:[4B6488] |
no43087s|| . 8sco TEST EAX,EAX
oo430877|| .. 75 78 JNZ SHORT AnyDVD.004308F1
00430 A1 54654B00 MOV EAX.DWORD PTR DS:[4B6554]
0o B5CO TEST EAX,EAX
|

C705 ©4644B00 40974900 |MOV DWORD PTR DS:[4Bb464],AnyDVD.00499740 ASCII "&Continue”

Figure 22

MUP AnyDVD v6.1.3.6 by CondZero

RRTEAM EZINE ISSUE (I}
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AiTeam

But to be more expedient, [and there is more than one way to do this], We can simply NOP the MOV
instruction above. The value in EAX will remain unchanged at ‘1’. This will force the test condition to take the
JNZ and move past the nag screen.

52.2.6.3 GENERAL SETTINGS & REGISTRATION INFORMATION

The “trial” version of the application claims to not save any settings after the application exits implying the
settings are only saved while the application remains active. This statement is only partially true. The settings

IM

have to be stored somewhere and retrieved for interrogation. The “trial” version simply skips the process of
retrieving this information and only displays the “default” options on application launch. You can easily verify
how the application is storing the settings. The absence of any *.ini file suggests the registry is the data
warehouse for this activity. Simply scan for the RegSetValueExA APl and set BP’s on all of them and you’ll find
the addresses where your settings get saved. The restoration of settings is a bit trickier. The application

doesn’t directly CALL the API, but moves the API to a register variable to mask it’s use:

0041D376 | . 8B2D 00E05000 MOV EBP, DWORD PTR
DS: [<&advapi32.#494>] ; advapi32.RegQueryValueExA

and then simply CALLS the register variable.

For those concerned about what information is displayed, a certain function is called once before displaying
the application in the system tray (WM_ACTIVATE) and then each time you right click (WM_LBUTTONDOWN)
on the application for “Settings”.

“ u

Next is determining the registered to: and serial code in the information window. The application looks to
retrieve this information in another function. If you have a valid registration, then that info would appear
otherwise “Nobody” appears with the trial time left. What is important is that register BL is set to ‘1’
registered, or remains ‘0’ unregistered and moved to register AL at the end of the function. In turn, register AL
is moved to variable and used for determining “saved settings”, display of the “order” button and “Registered

to:” in the “Settings” dialog.

The beginning of what I'll call the “Registration” function appears below:

10431440|rS B1EC F8010000 SUB ESP,1F8
31446|| . Al DD254A00 |MOV EAX,DWORD PTR DS:[4A25D0]
1: 53 PUSH EBX
55 PUSH EBP
8BAC24 08020000 MOV EBP,DWORD PTR SS:[ESP+208)
898424 FC010000 MOV DWORD PTR SS:[ESP+1FC],EAX
Al 88644B00 |MOV EAX,DWORD PIR DS:(4B6488]
56 |PUSH ESI
32DB | XOR BL,BL
85C0 | TEST EAX,EAX
57 | PUSH EDI
14¢ . BBF1 [MOV ESI,ECX
168 . OF84 C9000000 JE AnyDVD.D0431

Figure 23

Notice that register BL is cleared at address 00431461. | have set a BP on address 0043145B. The DWORD
pointer [004B6488] points to a DWORD that contains the address “value” of whom the application is
“Registered to”. Note: if not registered, this DWORD would contain ‘O’s (i.e. no valid DWORD address). Find

MUP AnyDVD v6.1.3.6 by CondZero

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

some ‘0’s in the same section referenced and hexedit your ascii literal into this area and simply reference that
DWORD value in DWORD pointer 004B6488 above. Register EAX is tested for a valid DWORD address and if
none found the function bypasses the remaining registration details so ‘1’ is never moved to register BL. If you
are going this route you will need to consider one additional change. For those that don’t want to be bothered
with this, you can simply make the following change and skip the rest of this section.

00431468 OF54 C7000000 JE AnyDWD.00431535

e

52.2.6.4 REGISTERED NAME OPTION (CONT’D):

You have a registration name, but no serial number. The easiest method here is to make the following change:

> L8BOD 74644800 |MOV ECX,DWORD PTR DS:[4B6474) | AnyDVD.004B8513
. 85C9 |TEST ECX,ECX
v 74 5F JE SHORT AnyDVD.00431535
. 8SED |TEST EBP,EBP
.. 74 5B |JE SHORT AnyDVD.00431535
Al 6C664B00 |MOV EAX,DWORD PTR DS:[4B666C]
85c0 | TEST EAX,EAX
8BF 1 |MOV EST,ECX
. 75 05 |JNZ SHORT AnyDVD.004314EA
B8 849E4900 MOV EAX,AnyDVD.00499E84 ASCII "Serial:"
> 81 |PUSH ECX -
50 |PUSH EAX ‘s
68 64884900 |PUSH AnyDVD.00498B64 Format = "%s %s"
55 |PUSH EBP :
FF15 48E25000 |CALL DWORD PTR DS: [<Suser32.#729>] wsprintfA

Figure 24
The highlighted line at address 004314D4 above takes you to the all important line below:
00431535 B3 01 MOV BL, 1

After stepping through this function a few times, you will see what is going on.

2.2.6.5 HD DVD & BLU-RAY SETTINGS

Unless you have purchased the upgrade, this functionality is disabled. You cannot change any of the settings.
There is a huge function, you can’t miss it because there are literally a hundred moves that is moving literals
and values to variables before the “Settings” dialog is displayed. See beginning of the function below:

MUP AnyDVD v6.1.3.6 by CondZero

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

JOEEEN - ©815 3c6A4BOO IMOV EDX,DWORD PTR DS:[4B6A3C]
0 1| - 33CO0 XOR EAX,EAX
S7 |PUSH EDI
B9 B2030000 MOV ECX,3B2
8BFE MOV EDI ,ESI
F3:AB jREP STOS DWORD PIR ES:[EDI]
Al BC374A00 MOV EAX,DWORD PTR DS:[4A37BC]
8BOD 8CHB4BOO {MOV ECX,DWORD PTR DS: [4B6BBC)
8946 28 MOV DWORD PTR DS: [ESI+28],EAX
Al 9CeB4BOO MOV EAX,DWORD PTR DS:[4B6B9C]
898E 7C010000 |MOV DWORD PTR DS: [ESI+17C],ECX
8B0D D0644B00 |MOV ECX,DWORD PTR DS:[4B64D0]
8996 FO010000 MOV DWORD PTR DS:[ESI+1F0],EDX
Figure 25

In this function is a test for the HD DVD & Blu-Ray upgrade. Step through this function and you will see the
details. If we scroll down to the following section shown below, set (2) BP’s as shown:

Al BC134B00 MOV EAX,DWORD PTR DS:[4B138C)
BBCE MOV ECX,EAX

C1ES 04 SHR ECX.4

83E1 01 AND ECX.1

B98E EDOS000D MOV [WORD PTR DS:[ESI+BE0].ECX
8800 MOV EDX.EAX

C1EA 07 SHR EDX,7

83E2 01 AND EDX,1

8996 E4080000 MOV [WORD PTR DS:[ESI+BE4].EDX
8BCS MOV ECX.EAX

C1E% 05 SHR ECX.5

83E1 01 AND ECX.1

898E CBO80000 MOV DWORD PTR DS:[ESI+BCS8).ECX

Figure 26

I have set (2) BP’s, one at address 00431830 and 00431851. The first BP is for reference for the change that will
be required to enable changing the options for HD DVD and Blu-Ray within the Settings dialog. Address
00431859 moves the good ‘1’ value or bad ‘0’ value to a DWORD address that is later conditionally tested in
the ANYDIALOG.DLL module. We want the good value ‘1’ in this address so we make the following change to
the grey highlighted line above as shown below:

| . ssce MOV ECX,EAX
00431853 C1E9 04 SHR ECX.4
oo431835/| . 83E1 01 AND ECX.1
B9SE CBOBOOOD MOV DWORD PTR DS:[ESI+8C8],ECK

Now register ECX will contain the good value ‘1’. This takes care of enabling the settings.

MUP AnyDVD v6.1.3.6 by CondZero

ARTEAM EZINE ISSUE 11l REV.1

ARTEAM EZINE ISSUE 1Y

I Reversing : I'm just'doing my hobby]

2.2.6.6 HD DVD & BLU-RAY FUNCTIONALITY

The Context menu below highlighted section in blue is ordinarily disabled and a message box appears

indicating you need to purchase the upgrade to use:

v Enable AryDVD
Settings...

Help...
ShySoft...

Rip Video DWVD to Harddisk..
Rip Video HD DVD /&

v Autostart
Exit

> Harddisk....

AnyDVD 6.1.3.6

_!L Sorry, but the HD DVD & Blu-Ray ripper is not available for you.
Please by a HD upgrade license.

[o]

To enable this feature pause the debugger “Ollydbg” at the messagebox above and look in the Call Stack of

Main Thread window. Double click on the grey highlighted line below:

0012C86C |004324BA| » USER32.MessageBoxA

0012C870i00000000

0012C874|003A8D48

0012C878i004BGBBO Title

0012C87C| 00010030

o)
le

 NULL

AnyDVD.004324B4

“Sorry, but the HD DVD & Blu-Ray ripper is nof
-~ "AnyDVD 6.1.3.6"

St ~ MB_OK|MB_ICONEXCLAMATION |MB_APPLMODAL | 10000 |
0012D864/| 00435324 | AnyDVD . 00432470

| AnyDVD. 0043531F

Figure 27

This takes us to a function that checks if we have the upgrade option. Note | have already made the necessary

change to reflect the upgrade option shown below:

0432449¢

(
oo
.

00432492’

B

"~

55 PUSH EBP
8BEC MOV EBP,ESP

83E4 F8 AND ESP,FFFFFEFF8

81EC DBOF0000 SUB ESP,OFD8

A1 D0254A00 MOV EAX,DWORD PIR DS:[4A25D0]
8B15 8C134B00 MOV EDX,DWORD PTR DS:[4B138C]
898424 D40F0000 MOV DWORD PTR SS:[ESP+FD4],EAX
8BC2 MOV EAX,EDX

BO 01 MOV AL.1

a0 |NoP

a8 01 TEST AL.1

53 PUSH EBX

57 PUSH EDI

75 35 JNZ SHORT AnyDVD.004324CE

Figure 28

The application will now take the JNZ at address 00432497 and bypass the “Sorry” message which you can see

by scrolling further down. This change is too easy and | suspect there may be another condition lurking in the

background.

MUP AnyDVD v6.1.3.6 by CondZero

RRTEAM EZINE ISSUE (I

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AiTpam

12.2.6.7 GOTCHA'S

While doing some preliminary testing of the patched version of this application, | noticed an immediate
problem when viewing the Settings >> Information window. As soon as | pressed the OK button the application
exited. Upon further review, | discovered an address pointer value which is tested in the ANYDIALOG.DLL
module after checking to see if you are registered and whether to display the message:

“This is a trial version of AnyDVD. Settings change will be lost after program exit.
The registered version will save settings and restore them on program start."

The application then has a few conditional tests prior to an ExitProcess API. See below:

50 PUSH EAX l
. E8 BCDADCOD CALL <JMP.SUSER32.MessageBoxA> MessageBoxA
> 8B93 68030000 MOV EDX.DWORD PTR DS: [EBX+368)
83BA 1C0S0000 00 MP DWORD PTR DS:[EDX+51C). !
o 74,21)
8B8B 68030000 WORD PTR DS: [EBX+368]
8881 14050000 MOV EAX, TWORD PTR DS: [ECK+514]
. 3D E8030000 CMP EAX,3E8
w 72 07 JB SHORT AnyDialo.0D9F1FD1
. 3D 4E61BCO0 CMP EAX,0BC614E
. 75 07 JNZ SHORT AnyDialo.009F1FD8
09F1FD1| > 6A 00 PUSH 0
I - =c 1Ep20c00 CALL <JMP.SKERNEL32.ExitProcess>

Figure 29
The value | showed for the DWORD PTR DS:[ECX+514], Address: 009F1FBD appears in the pane window below:
Stack DS:[0012CEA8]=00000000

EAX=00000001

00000000 Since our value == 0, when compared with the value of 3ES8, the

003ADFAD |ASCIT “SOrder..." . . .
0000z reer application would take the JB and jump to ExitProcess. The stack for

00000001 this address range shows the following.
003ASB36|ASCII "CSS Keys"

Interesting, an “&O0rder...” literal immediately below our address of concern. More investigation reveals that
this value is tied to whether or not you have a valid serial number. It gets more interesting after this. If you
have entered a serial number beware of a file called AnyDVD.chk. On my machine this file is located in the
following folder:

C:\Documents and Settings\Administrator\Application Data\SlySoft\AnyDVD

Yours may be different. The existence of this file in combination with perhaps an invalid serial number ?? or
old serial number ?? Can cause the application to issue the “Your trial period has expired” messagebox. Just
delete this file and continue. Getting back to the ExitProcess problem, | traced the ASCIl “&Order...” move to
the following routine:

MUP AnyDVD v6.1.3.6 by CondZero

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

8BOD 44654B00 |MOV ECX,DWORD PTR DS:[4B6544] |
B898E 18050000 MOV DWORD PTR DS: [ESI+S518],ECX
8B15 AC664B00 MOV EDX,DWORD PTR DS:[4B66AC)
8996 40050000 MOV DWORD PTR DS: [ESI+S540),EDX
Al BC664B00 MOV EAX,DWORD PTR DS:[4B66BC)
8986 48050000 MOV DWORD PTR DS:[ESI+548]),EAX
Code pane:
DS:[004B65441=003ADFAO, (ASCII "&Order...")

ECX=003AFF20, (ASCII "About")

The recipient address of [ESI+518] is +4 our concerned address. We can simply change this move to the
following:

| . 8BOD 44654800 MOV ECX,DWORD PTR DS:[4B6544]
00431F27 B9B8E 14050000 |MOV DWORD FTR DS:[ESI+514].ECX |
Our aim is to get a value in this address > 3E8. Also, we don’t want to patch the ANYDIALOG.DLL if we don’t
have to. At this point, you should save all your patches and copy them to the executable. Remember that the

saved executable name must be the same as the original. Also, we do not want to save the patch that prohibits
the CreateProcess from executing. This patch was only to analyze the application.

2.2.7 CONCLUSIONS

There could possibly be more mysteries uncovered in this application and certainly better ways to patch. |
freely admit that | don’t really use this application, but just wanted to get a better understanding of its process
flow. My goal was to analyze the major limitations and point out some options from a precursory perspective. |
hope you enjoyed reading this Tutorial and perhaps learned a few things about it.

MUP AnyDVD v6.1.3.6 by CondZero

RRTEAM EZINE ISSUE (I}
ARTEAM EZINE ISSUE 11l REV.1

AiTeam

I Reversing : I'm just'doing my hobby]

3 PATCHING PRIMA EGUIDES (SINGLE BYTE PATCHING) BY SSLEVIN

3.1 INTRODUCTION

After a lot of wondering thru the Internet | finally found something interesting to reverse and at the same time
to have a tight connection with my favorite file protector, you guess, ActiveMark.

But the scope of this tutorial won’t be unpacking and patching ActiveMark although targets are protected with
it, since this matter is well explained in previous tutorials written by condzero.

Namely, guys from PrimaGames got an idea how to earn some money by making e-Guides for different
software (mostly games).

Price of this stuff is fair, but hey, who is talking about the price? Reversing is the topic, right? So let see how to
make this stuff work without limitations.

3.2 PATCHING PRIMA EGUIDES

This tutorial will show you how to patch exe file used to browse a pdf document which is password protected
and its trial use is limited to first ten pages.

3.2.1 TARGET
Target used in this tutorial can be downloaded here:

http://d.trymedia.com/dm/primag/0761550259 1/trygames/MasterofOrionllIPrimaOffici.exe

3.2.2 TOOLS

e OllyDbgv1.10
e Some brain

3.3 INSPECTING THE TARGET
Initial nag screen which informs us about the fact that we are using trial version of software is classic form

used by Macrovision (see Figure 30.) The only difference is that there is no time limitation but number of
pages you can read for free (10 pages).

Patching Prima eGuides (single byte patching) by SSIEvIN

http://d.trymedia.com/dm/primag/0761550259_1/trygames/MasterofOrionIIIPrimaOffici.exe

RRTEAM EZINE ISSUE (I

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

| P Master of Orian I11; Prima Official eGuide

Master of Orion III: Prim

Your eguide is in Trial Mode,
You have 10 free pages!
Upgrade to the full version of this eGuide now and enjoy...

= Unlimited usage - atcess and search the full eGuide.

» Store and prink from your own comguter.

= Install on multiple compauters you own (Internet required).
» Free customertechnecal suppart il you ever need help,

$9.99

Figure 30

If you think that after successful removing of ActiveMark 5 you also solved trial limitations you’ll be
disappointed. Trial limit of ten pages is still there (see Figure 31.)

[Prima Games eGuide [Trial Mode]

B S ® 4 4 0oz |

Figure 31
But this also give us a good hint on where to look later for patches, right? (String: Trial Mode).

Last, but not the least, if you try to open pdf document itself which is located in C:\Program Files\Prima
Games\Master of Orion Ill Prima Official eGuide\pdf you'll find that it is password protected (see Figure 32.)
Bruteforceing is an option here, but where to find a readymade bruteforcer? (If you know how to make one,
hat down, you don’t need to read this further).

‘-l., ‘76155025, pd™ is probeched., Flease enter & Document Cpen Passwoard,

Enter Password: _| |

[o | [conca |

Figure 32

Patching Prima eGuides (single byte patching) by SSIEvIN

ARTERM'EZINE [SSUE I

ARTEAM EZINE ISSUE Il REV.1

I Reversing : I'm just'doing my hobby]

Tee!!!

3.4 FINDING PATCH(ES)

3.4.1 PIECE OF CAKE

It is literally piece of cake to find patches for this stuff. At first | was amazed that there is no other protection
than sole byte comparing. No anti-debug tricks, no checksum, simply nothing.

So, let start. Load your rebuilt target in Olly. Then search for all referenced text strings. After Olly finishes
search, scroll to the top of the list, mark first line, rightclick and search for text: Trial Mode. (I already said that
target is giving us a good hint on where to search ©). Follow in disassembler (press Enter). You’ll find yourself
in a spot like in Figure 33.

LHL dumped_o A

|JE_SHORT dumped 3.00402406

JE SHORT dumped_3.08403513

Figure 33

Remark the conditional jump (JE) which jumps over Trial Mode if taken. Plain stupid method of patching would
be to change conditional to unconditional jump (JE to JMP), problem solved, right?

Wroong ... Try to do this, and you |l find yourself in lalaland. ©

In a reversers way, you will try to find which value is set at memory location pointed by value of ESI register
plus 1AC h and then compared with value of less significant byte of EBX register — BL (see the comparison
above conditional jump).

How to achieve this? Simply, set breakpoint at 403490 (F2) and run
_ application (F9). After Olly breaks check the content of its pane window

and you will see that BL is 00 and is compared to 0260723C (ESI+1AC h)
which is 01.

After comparison is done, conditional jump won’t be taken and we are in trial mode.

Patching Prima eGuides (single byte patching) by SSIEvIN

ARTEAM EZINE ISSUE 1Y

I Reversing : I'm just'doing my hobby]

ARTEAM EZINE ISSUE 11l REV.1 a

Now, we have to find where the value of 0260723C is set to 01. Common sense is telling us that it happens in
some CALL above comparison. So set breakpoint at this line:

0040348B E8 OBESFFFF CALL dumped 3.0040199B

Restart application and follow your new breakpoint in disassembler. Press Enter to get into the call without
executing code. You Il see something similar to Figure 34.

JME SHORT dumped 3. 8461 29CH

JE SHORT dumped_ 3. 88468139F0

Figure 34
See, there are two lines of code which are setting value of ESI+1ACh:

00401926 MOV BYTE PTR DS:[ESI+1AC],1 & to O

[..omissis...]

004019C1 |. /75 07 JNZ SHORT dumped 3.004019CA
004019C3 |. C686 AC010000 00 MOV BYTE PTR DS:[ESI+1AC],0
004019CA |> \8D4D FC LEA ECX,DWORD PTR SS: [EBP-4]

So, you have two options for patching: either you will change 01 to 00 at line 004019A6 or you will NOP
conditional jump at line 004019C1 (75 07 to 90 90).

After assembling any of this changes copy them to executable, save under another name and you are done!!!

Patching Prima eGuides (single byte patching) by SSIEvIN

ARTEAM EZINE ISSUE 1Y
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

3.4.2 AESTHETIC PATCH

To those of you who do not like any kind of nag screens showing up. You can remove nag screen shown in
Figure 35 by simply NOP—ing a call to this procedure at line:

004012D4 |. FF90 B800000O CALL DWORD PTR DS: [EAX+B8]

This eGuide
brought to you by

)

PRIMA'

EAMES
@© 2007 by Prima Games. Prima Games is a division of Randem House, Inc.

Developed by ﬁlNM ww [INM. com

Figure 35

And, yes, how to find it? Simply, trace thru the code with F8, and after this nag appears set breakpoint one line
above EIP. Since steping into (F7) this call and assembling RET at the beginning of nag subroutine doesn’t work
simply NOP this call and nag is history.

3.5 CONCLUSIONS
As you could see, this was incredibly easy to do. There is a whole bunch of these on trygames.com and if you

want to practice be my guest. Personally, | don’t need this stuff, (uuuhhh, | can’t even remember when |
played some game ©). Weird kind of limitation was my motivation to reverse this.

Patching Prima eGuides (single byte patching) by SSIEVIN

RRTEAM EZINE ISSUE (I}
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

4 EXAMDIFF 4. XXX REVERSING THE PROTECTION SCHEMA BY SHUB-NIGURRATH

4.1 INTRODUCTION

AiTeam

The program is a really interesting and powerful comparison program. | will not list all the advantages of this
tool, because | am not interested in them for this tutorial. Also according to the Foreword section of this issue |
decided to write this contribution just because the tutorial contains some “lessons”. The previous version of
this program has been keygenned since a lot of time, cracked and abused in all the possible ways. The new
version 4.0 has been worked for a long time then | was expecting some type of improvement in protection. |
started to reverse this last version just because | was curious to verify which improvements were running.

You can download ExamDiff Pro (www.prestosoft.com), | tested the described approach on versions up to
4.0.23.

4.2 APPROACHING THE ENEMY

The approach | will show works for a lot of versions, from 3.4.2, 3.5.1.5 up to 4.0.0.xx (I tested it up to latest
build too).

The program is a normal MFC program, not compressed, which is using an encryption-based licensing scheme
and has a limited trial time (30 days). Previous versions of the program have been keygenned and keygens are
out on the net. | will not teach where to find one of them but one of the team which made them is CORE...I will
not even try to understand the keygen algo..

The program, once installed, has an initial nag reminding you that your copy is a trial and, after 30 days,
several functions are disabled (and also the title bar reports it).

“s¢ Exambiff Pro (Unpaid evaluation copy) [Welcome to Exembiff Pro

Files Edit ‘iew Mavigation Search Help @= ExamDiff Pro Version 4.0
. Copyright @ 1997-2008

Thank you for trying ExamDiff Pro. This is an unpaid copy
for evaluation only, For ordering information click on the

h T B How To Order button, This dialog is not displayed in a
L v paid copy.

e Y ‘You have been evaluating ExamDiff Pro for 373 days.

Thank you for using ExamDiff Pro. *ou have been evaluating it for 8 days. Evaluation days remaining: “

Please remember that ExamDiff Pro is not free. You have 30 days o evaluate it for Request 30-day extension

free, Use after 30 days requires purchasing a license.
Ok] l Bury Mow | { Activate.., ‘ lﬂuw To COrder ‘

The interesting result you get reversing this program is that you realize how developers rarely learn from their
past errors, this new version has been worked for a long time, but the protection is as lame as before. It didn’t
take long time to realize how to generally patch it.

ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath

http://www.prestosoft.com/

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

whid The first thing to do (after installation of
course) is to run the main program within

Olly and to analyze it using IDA, for a higher
e After having patched the program | realized that there
was an existing patch already on the net, which was
using almost the same approach (it is by CW2K), damn branches. | wusually use both tools

"_". Anyway | decided to align this tutorial to that simultaneously, for different reasons | will
patch, integrating it with my comments.

and graphical view of functions and

not explain here: the main reason is that IDA

gives you a better view of the program
structures and branches, as well as library part of code (using the signatures), but the debugger is not as usable
as OllyDbg, which remains the top class win32 Ring3 debugger.

4.3 REVERSING THE REGISTRATION SCHEMA

The first thing | tried was to test the older serial numbers just to see if the program was accepting them. | used
this serial, which was good for version 3.1:

H+Jgcces3ANbNh8mC+1dHgpALFNelaAEdneZ1R/3h9n2huUELOHr+K
/PT8FU2/ZK1s1C74IsZgudFbdtfYjz0njjISAvyKbpifrZfpeOESzt
OTIhfAS5paKXtIGbJu5JYX6VRg+6Jz1StfR6puDK2Q51iWI8sB/EHkxia
1rH2WEgqrnkfbBrrrdylnEvSudE8JC6YPHG2F5JqJ/3bN/+k3J1BbXP
TImghW70dwiuX32XZGtSL5iCrICOTtFwrT/ZJP8pkGpT17SkrOGLITE
lgykc+sR9avpl3zMkwz/1ijSwVQlUVILXJOS6W60BIBBC51fvgrLE4s
POmMKLcfla9YHIOrEgeb5y2XQhhrdJ2dryiJC474=

If you enter this serial the program warns you that the serial is old and that you must ask for a new one to
PrestoSoft.

[(Examift Pro

l: Faled to register. Please verify your key and try again, or request a new key from PrestoSoft.

0046465A |. 68 38376200 PUSH ExamDiff.00623738
; UNICODE "Failed to register. Please verify your key and try again, or request a
new key from PrestoSoft."

this message is into the function sub_464164 (using the name IDA assign to it).

S Thanks to the string analysis done by IDA, you
oz :;;;12‘?;?_454474 » can see that, a little above this code, there the
AL following PUSH, which pushes (and IDA tells you
éEEqngénww-E?ﬂ clearly) the string "registered successfully" (see
e A figure beside).
linz loc_464544

ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

00464633 |. 68 00376200 PUSH ExamDiff.00623700
; |Argl = 00623700

Needless to say that this is the correct place where to start your journey.

call sub_482897 The two branches of this function, the goodboy and the
mov eax, [eax] . . .
mov eax. [eax] badboy, are starting from two important jumps:
moy ecx, [ebp+var_(241
cmp eax, [ecxl
Jnz loc_464640 ; Jump 1 .
¢ ™ v jump 1:
ELTN
duord_BF3A1@, 1@h
Eﬂﬁ eggr duord_6F39FC .text:004643B0 cmp eax, [ecx]
Linb short loc_4B643CC
—
AR ¥ 1 .text:004643B2 Jjnz loc 46464D ; good
Ew ecx, offset duord_6F39FC| boys don't jump

e

EIN

loc_4643CC: jump 2:

cmp dword_BF39F4, 18h|

mov eax, dword_B6F39ER

inb short loc_46430F .text:004643F2 call sub 463F2D
I‘ _

1
mov eax, offset dword_6F 39E8| .text:004643F7 test eax, eax
E —

N

= .text:004643F9 iz loc 46464D ; good
loc_46430F : ' . -
hush duord_6F3RAC boys don't jump here
push BCx
push dword_6F39F@
push eax 1 . H H
Push offset dvord_6F3300 If you debug the program you'll realize that not jumping
ot ::::“Ziiz" there, directly brings you to the "registered successfully"
j loc_464640 v Jump 2

T — message.

NC

ends to badboy

j'e"ds ta gpadbay If you force these two jumps you will directly go to the

section of the function which is responsible of coding and
creating the registration number file, the password.bin

file, holding the registration number.

AU ¥
~ae’
-
ar,
(] °NOPing these two jumps will not
H 0046457F|| . 8D8D CCFOFFFF LEA ECX,[LOCAL.397]
"6 resolve the problem. It will force the E$ $1EDFOFF CALL ExamDiff.0040331B
i 8D8D EOFDFFFF LEA ECX,[LOCAL.136]
s program to acceptvany serial you ,er,]t,er 51 PUSH ECX ExamDiff.00402896
but the program wil still show the initial 50 PUSH EAX
. . . 8D85 C8F9FFFF LEA EAX,[LOCAL.398]
nag and will remain unregistered. 50 PUSH EAX
! HY H H Ce45 FC 08 MOU BYTE PTR $S:[EBP-%#], 28
There's an additional check | will explain Ea SEsForF BEM Exanbicr 60862853
later.. 83cH 6C ADD ESP, 0C
68 24286200 PUSH ExamDiff.00622824 UNICODE “password.bin"
. 50 PUSH ERX
qqﬂﬁﬂ?eB . §P85 D8FSFFFF EEQVEEXJ[LUEQL.SSH]

ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AiTeam

4.3.1 STUDYING THE JUMP 1

Then let we approach the two jumps one by one. The first one (004643B2) depends by the CMP instruction
just above (004643B0) where (debugging) you have:

DS: [OOE9EA30]-BOIFAOGY
EAX=FFFFFFFF EAX=FFFFFFFF and [ECX]= BO9FA064

EAX is always equal to FFFFFFFF, but what about the constant BO9FA064 pointed by ECX? What | did was to do
a "search for all constants" on Olly (or similarly with IDA) using the value BO9FAQ64.

The result is that the constant is moved to an array at the function sub_456BAE.

OO456D1F || . CT85 TCFFFFFF 9EIMOU [LOCAL.33],3EBABZ9E
00456029(] . CT45S 80 8261A04E|MOU [LOCAL.32],4EA0G182
0O456D30 || . CT4S AC G4AO9FBO MOU [LOCAL.21],BO9FROG4H
0O456D37|| . CT45S BO AAESOSAT MOU [LOCAL.20],ATOSESAA
OO456D3E|l . CT45S B4 39A41BDD | HOU [LOCAL.189],DD1BA439
00456045(] . CT45S B8 2F10FBBO|MOU [LOCAL.18],BOFB102F

This function is really interesting. | will talk about it a little later.
Anyway at the moment what | did is to modify the value pointed by ECX to FFFFFFFF -> [ECX]=FFFFFFFF.

This allows skipping the first jump correctly, but | will handle the function sub_456BAE separately into one of
the following sections

4.3.2 STUDYING THE JUMP 2

Now | am worrying of the second jump at the address 004643F9, which depends by the value of EAX (which
shouldn't be 0 to be a goodboy), which in turn depends by the call above the cmp:

.text:004643F2 call sub 463F2D

The deeper you patch the more robust is the patch, then | patched the call where it zeroed out the EAX
registry.

ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

¥
EIN L
mov eax, [ecx]
push esi
call dword ptr [eax]
i I —

EI N L EIN L H

mov eax, [ebx+644h]

Limp loc_464A88 loc_464082: loc_464@86:
mov eax, edi xor dax, eax
imp short loc_464@88

[X
BN
loc_464088:
mov ecx, [esp+1B4h+var_C1]
mov large fs:8, ecx
pop ecx
pop edi
pop esi
pop ebx
mov ecx, [esp+1fAdh+var_141
xor ecx, esp
call sub_574172
mov esp, ebp
pop ebp
retn 14h
sub_463F2D0 endp

Figure 36

Figure 36 clearly shows that there’s only one exit path which set to 0 the value of EAX. Than the correct place
where to patch the program is here:

Original code:

00464086 33C0 XOR EAX,EAX

Patched code: | used an opcode with same weight of the original one, using the same number of bytes
(important to not overwrite surrounding instructions), that forces EAX!=0

00464086 BO 01 MOV AL, 1

ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

4.3.3 HANDLING OF FUNCTION SUB_456BAE WHERE SERIALS VERSION ARE CHECKED

As said in section 0, the function sub_456BAE is crucial for the skipping of the first jump. Its structure is very
well disassembled by IDA: it’s a waterfall of tests and actions (see Figure 37).

——
I i 1 /)
check if serial is for version 3.1|\ i

TT /!

L S ’

ALl T 1 /
check 17 serial Is forersion 3.5] i
1

/
/
! (1IN
,
loc_456F55:
/ mov eax, [esi]
/ push edi ; MaxCount
/ push offset a3_1 P T
/ push eax 5 Str1
,’I call _wcsncmp
K add esp, @Ch
F"m I N ELITE K test eax, eax
ﬂ poctions if serial Iis for vl 2| [actions if serial is for version 2. Il jnz Shnrt 1|:|C_456F73

add
leave

ebp, 74h|

eax, L[ebp+ebx*4+74h+var_CC1]
loc_457084

Fetn
sub_45GHRE endp

; ENLL
/ mov
Jmp

Figure 37

What this function does?

The function controls that the serial number, read from password.bin file or manually entered, is one
generated for version 4.0.x of ExamDiff Pro. To answer this question, the function receives through the registry
a string, holding the version number, which has been found inside the serial number.

EAX 0012E088

ECX ©0406FAT ExamDiff.O04OBFAT
EDX DOF83A30 UNICODE "3.1"

EBX ©06F33D0 ExamDiff.006F33D0

The obvious thing to do is then, to place a BP at the beginning and see what it
actually the function receives. The function receive as parameter the string

"3.1" which matches with the serial | used (that was good for version 3.1)..
You can easily find this placing a BreakPoint here:
00456BAE /S

55 PUSH EBP

EDX is equal to "3.1" in unicode

A bird-fly overview of the function tells that there's a nested sequence of jumps, checking against the given
string: the branch corresponding to the string "3.1" is the following:

ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

loc 456F55:

mov eax, [esi]

push edi ; MaxCount

push offset a3 1 ;o"3.1m

push eax ; Strl

call _wcsncmp ; this call is identified by IDA only..
add esp, 0OCh

test eax, eax

jnz short loc 456F73

The exit points are all MOVs of this type (here | wrote just the instructions executed when the parameter is
"3.1"):

.text:00456F6A mov eax, [ebptebx*4+74h+var CC]
.text:00456F6E Jjmp loc 457004 ;jump to the function exit

After execution of the instruction at 00456F6A we have EAX=B0O9FAQ64. This value is one of those handled at
the beginning of this same function!

Reassuming then, we have a function that initializes a map of crypto constants, which are used to place a
return value into EAX, starting from the version of the program found inside the license code. According to
what | found also on section 0 this same constants are used to handle the first jump | identified before. These
constants are compared against a value of FFFFFFFF at 004643B0.

The patch | did is an obvious one: force the function to always return FFFFFFFF so the compare at 004643B0
whatever constant will be used will be always true.

00456BAE 33C0 XOR EAX,EAX
00456BBO B8 FFFFFFFF MOV EAX, -1
00456BB5 C3 RETN
00456BB6 90 NOP
00456BB7 90 NOP
00456BB8 90 NOP

which is equivalent to this code:
sub 456BAE () {

return -1;

This is the resulting second patch:

ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath

ARTEAM EZINE ISSUE 1Y
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

Original Code:

00456BAE /$ 55 PUSH EBP

00456BAF |. 8D6C24 8C LEA EBP,DWORD PTR SS:[ESP-74]
00456BB3 |. 81EC 90010000 SUB ESP, 190

Patched Code:

00456BAE 33C0 XOR EAX,EAX
00456BB0 B8 FFFFFFFF MOV EAX, -1
00456BB5 C3 RETN
00456BB6 90 NOP
00456BB7 90 NOP
00456BB8 90 NOP

eThe function sub_456BAE is directly called only by the function
sub_45F597 which is directly connected to the interpretation of
password.bin file (already read from disk). This function is called a few

instruction above the first of the two jumps | already described (in this
case receives the buffer coming from the Activate dialogbox). These
constants are then connected to the decryption of password.bin file into
the resulting serial number. KANAL for PEiD doesn't reveal anything here,
probably then the developers team used a proprietary crypto system, or
a customized one.

4.4 TESTING WHOLE THING & CONCLUSIONS

Once you patched the program use one of the mentioned keygenerators available for older versions of
ExamDiff Pro, generate a key and copy the generated passowrd.bin file, or paste the generated key in the
activation window (depending on the keygenerator you'll use). Close and restart and you'll have a fully working
program.

I will leave to you to properly create an efficient search&replace patcher, using an unique invariant byte
pattern common to all the versions of this program (it's not that difficult), what I can tell is that this patch
works for all the mentioned versions.

ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

5 REVERSING BUSINESS TRANSLATOR 9.00 BY KAIRA

5.1 INTRODUCTION

The Target Business Translator 9.00
Available url

The Tools OllyDbg 1.10, PEiD

The Protection No Protection

Category Serial Fishing

Level Beginner

Recommended Tools CrackersKit 2.0

All the tools can be available on these following sites :-

= http://home.t-online.de/home/Ollydbg --> Ollydbg and Plug-ins
= http://www.teamicu.org --> CrackersKit 2.0 which have almost all the cracking tools.

oA little classical tutorial from Kaira, just to
remember everybody how simple are sometimes

modern programs which should apparently be well
protected, or at least, not so badly unprotected.
Years of reversing didn’t teach anything?

Reversing Business Translator 9.00 by kaira

htttp://www.zhangduo.com/
http://home.t-online.de/home/Ollydbg
http://www.teamicu.org/

ARTEAMIEZINE ISSUE IN

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AiTeam

5.2 APPROACHING THE ENEMY

Open PEID. in PEID go to Open which is ". . ." and load the program which is on Program Files, look at this
picture below

2% PED v0. 54

File: | C:\Program Files\Business Translator\GusiTran, exe lzl
Entrypoink: | 00113FES EP Section: | CODE ﬂ
File Offset: |00113365 FirstBytes: [55,8B,EC,83 | = |
Linker Info: | z.25 Subsystem: | \Win32 GUI ﬂ

Borland Delphi 6.0 - 7.0

Multi Scan Task Wiewer Options About | Exit |

[sStay on top ﬂ ﬂ

5.2.1 BODY

As you can see from the picture above that - the program is not protected only coded in "Borland Delphi 6.0 —
7.0". Lets us do the little eximanation scheme. Open up BusiTran.exe. It goes directly to the nag screen. | will
assume that we all know what is checking for? the registration key. We are presented with a new window
asking for Registration Name, and a box asking for Registration Code. Enter anything for the box of reg. name,
maybe your name etc, and for the registration code, enter any numbers & press Register Now. We get a
message box saying "Please make sure the registration code and the registration name are correct ". Remeber

to write this message down as we will be searching for it later. Press OK and the program returns to the
window asking for our Registration Code.

5.2.2 SEARCHING FOR A SERIAL

Close BusiTran.exe and open Ollydbg. In Olly, go to File, and Open BusiTran.exe, it will take few seconds to
analyzes the code. We are going to start by looking for the string from the error message we recieved. To do

this, right click on the code window and go to Search For, select All Referenced Text Strings. Look at this
picture below.

Reversing Business Translator 9.00 by kaira

RRTEAM EZINE ISSUE (I}

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

» Mame {label) in current module Ckrl+-M
» Mame in all modules
iew 4
Comrmand Ckrl+F
Copy to executable 4
) Sequence of commands Chrl+5
Analysis 3 Conskant
Help on symbolic name Ctrl+F1 Fnsan.
Binary string Chrl+B
Asm2Clipboard »
BDDHﬂaE& , Al intermodular calls
all commands
Durmp debugged process
all sequences
Make dumnp of process il et
lkra String Reference » Fonstants

All switches

Appearance

A new window will open up with all the referenced strings in the executable. Scroll to the top of the page and
select the first string. Right click and choose Search For Text. In the dialog box enter "Please make sure the
registration code and the registration name are correct" without the quotes. Make sure Case Sensitive is
unchecked. You should end up here.

AESE1E1E| PUSH BusiTran. @856E1E24 ASCII "Inwalid Registration Code™
HAEEAIEBIE| PUSH BusiTran.88581E46 ASCII "Flease make sure the registrationtcocode and

Double click this string. You should be here.

BEEE1EEZ| . ES B934FBFF |CALL BusiTran.B88484FCE

BEEEIBET| . S045 EC LEA ERX,OWORDO FTR S55: [EEF-141

BEEEIEER| . BA ZA1ESARA | MOV E0M,BusiTran. BESAIEZE RASCII rrgi~r

HEEAIBEF| . ES FS2EFBFF |CALL BusiTran.B88484A6C

GESALIEL4| . &R @8 FUSH &

FEEAIBLE| o &8 241EEEAEA | PUSH BusiTran.BBSB1EZ4 ASCII "Inwalid Registration Code™
HEEEIBIE . &8 481ESEEA PUSH BusiTran.OESE1E4E ASCII "Please make sure the regist:
FHEAIEZE| . SB4E FC MOU ER, OWORO PTR S5: [EEF-41

GEEAIEZZ| . ES S41AFSFF |CALL BusiTran.B8845357C

BEEHiE2g(. 5@ FUSH EAX hiOwn e

HESEIEZ2Y] . ES bessFEFF | CALL <JMP.&user3Z.MessageBonAi MessageBonA

BEEAIBZE| > 33CA HOR ERX, EAX

This string "Please make sure the registration code and the registration name are correct" is the Bad Boy,
Scroll up to see the Good Guy or press Ctrl + G on the Keyboard to go straight to the Good Guy, and type
005018B6 and press OK. You should land here.

BEER1SAZ| . ES 29BS5F4FF |CALL Bus=iTran.B844CD0E

FAEA1ISHT| . 2045 EC LEA ER,OWORO PTR S5:LCEEBP-141

GEEA1SAA| o ES CE28F8FF |CALL BusiTran.B88484374

BEEE1ISAF| « &R B8 FUSH @

FESEISEL| . &8 ESICEAEA | PUSH BusiTran.AEASE1CES ASCII "Reqistration Successt™
HEEAISEE . 58 BEI0EEEA PUSH BusiTran.dE5E1084 ASCII " Thank you for your support.
GEEA1ISEE| . SB4E FC Mall ERX, OWORD PTR S5: CEEF-41

BEEE1ISEE| o ES BPICFSFF | CALL BusiTran. 88453570

BESR1SCE(. 5@ FUSH ERX hOwn e

GOSGISCY| L ES 6BSGFURF | CALL MR, Buserdz. NessageBayn> Mes=ageBionA

Scoll up a little bit to see whats happening above the Good Guy, check this picture below.

Reversing Business Translator 9.00 by kaira

RRTEAM EZINE ISSUE (I}

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

EESE1Z22A| . ES E926FBFF | CALL BusiTran.B8484F 7S

HESALIS2F| . S5CA TEST ERX, ERX

EEEE1291| .~ BF84 4382068681 JE BusiTran.38581A0A

HEEE1297) . SB4E FC HMaL ERX,. OWORD FTR S5: CEEFP-41]

BEEE1E2A| . SBEE ad483a0E MO ERX,.DWORD PTR DS5: [ERX+384]

BASAL1SAB| . 3302 ®OR EDX, EDX

BECE12AZ| . ES 29BSF4FF | CALL BusiTran.@@44coog

BESE1ZAF| . S8D45 EC LEA ERX,DWORD FTR S5: [EEP-141

BESA15AA| . ES CS30FBFF | GALL BusiTran.@@4@457E

HESEISAF| . &HA B8 FUSH &

FESEISEL| . &8 EICEAAR | PUSH BusiTran.@8581CES ASCII "Registration Successt™
BESHIZRE . &2 BEI0SEAR | PUSH BusiTran.BE501080 ASCII " Thank wou for wour support.
HESEIZSEE| . SB4E FC MaL ERX,. OWORO PTR S5: CEEBF-41

EESEISEE| . ES BYICFSFF | CALL BusiTran.BB845357C

{11 = R = | PUSH ERX hOwn e

AACEH] Sd Fa ARESFEFE | FOEE L MR fis enas Ha s 2 anaRao0s Me= = smeFau O

Above the Good Guy there is JE BusiTran.00501ADA which Jump straight to the side of a Bad Boy,
so our valid serial number is stored on this CALL BusiTran.00404F78 above TEST EAX, EAX, so lets set a
BreakPoint (F2) on this Call, check this picture below.

EEEEIEEE . ES ES3FEFF | CALL BusiTran.Bad@dere

AASE1SEF| . 85CA TEST ER&, ERA

EEEE1291| .~ BFS84 4236200681 JE BuziTran. AASA1A0A

HEEE1297) . SB4E FC Mol ERX, OWORD PTR S5: [EBP-41

EEEE1E2A) . SBEE ad4838081 MOU ERX, DWORD PTR DS5: [EAX+3E84]

\ESElZAE| . 3302 WOR ED, EDH

HESE1SAZ| . ES 29BSF4FF | CALL BusiTran.B8844C00E

HESELIZAF| . 8045 EC LER ERX,OWORD PTR S5:[EBF-141

HESE1ZAA| . ES CE20FEFF | CALL BusiTran.B88484974

HEEEIZAF| . &H B8 FPUSH &

EEcEisEl| . &8 ES2I1CEARR | PUSH BusiTran.@8501CES ASCII "Registration Successt™
BESHIEES| . &3 BEI0EEER | PUSH BusiTran.BESO10EG0 ASCII " Thank you for your suppoct.
HESEISEE| . BSB45 FC Mol ERH, OWORD PTR S55: CEBF-41

HESEISEE| . ES BYICFSFF | CALL BusiTran.B8845557C

AESALISCE| . 5@ FUSH ERX hOwner

HEER1EC4) . EZ &6B&EFEFF | CALL <JMP.%user32.MessageBonA MezsageBoxA

Press (F9) on the keyboard to run the Program and the nagscreen that will appear - Enter your Registration
Name & Registration Code, and click Register Now button look at this picture below.

Registration

Busziness Translator iz Shareware. If you
continue using her, beyond a tnal penod of
15 days. you are encouraged to pay a small
registration fee. The purpose of thizs message
iz to remind you.

The registration fee iz 88 USD or 79 Euro.
Once you regizter, you will zoon receive the
registration code that converts future shareware
versions to full versions registered to you.

OFf courze, this mezzage dizappears after you
register Buzsiness Translator.

Hiow to Register | By Mow | Renizter Later

Regiztration Name |k5'"EI

Registration Code |1 234567830

Reqgister Mow

15 Days Tnal Penod 7 15 Days Left
ENEENEENERNNNENEENEENEENR

Reversing Business Translator 9.00 by kaira

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

Move back to Olly, after you have pressed Register Now button it breaks at the breakpoint we set, look at this
picture below.

. EB E936FBFF |CALL BusilTran.Bo4edFes
BEEELZEF| . BECE TEST EHX,ERH_

Look also at the Registers (FPU) - EAX 00AOAQES ASCII "PSBBMTW2020004-6B61697261" --> my valid serial
number!!!

Registers (FPU] 4 L
EFX BEAEAEES ASCII "PEEEMTWZEZ2EEE4-EBS1E97 261"
ECH 7FD487FF userSZ. FrD427FF

EDW BEIFPHFS ASCII "lz345eroog™

EEx BEIFSZOE

ESF BiElzFEBC

EEF BE12F264

ESI BE420218 BusiTran.d8420218

EDI @El1zF428

Right Click on Registers (FPU) and the menu that appears after you’ve right clicked - click Copy all registers to
clipboard, and paste it with Notepad.exe. Look at this picture below.

Registers (FFUI i %

ERX BBRBREES ASCII "PSEBMTWZAZARR4-6E61697261
ECx 77D457FF userdz2. vr0437FF
ED¥ BESFFHYS ASCII "1234567298™
EBX BE39FS2EH

ESP Ba12FEEC

EEP Ba12F2@4

ESI BEAZNS1A FusiTean AARAZNZ1E

Copy all re s ko cliphoard

View MM registers
Yiew 3DMow! registers
Yiew debug reqisters

Appearance 4

5}
EFL aaadazas (MO, ME,HE,H,MS, PE, GE, 5]

STE empty —777? FFFF BEFFOGEFF BEFFEEFF
5T1 empty —777 FFFF BEFFEEFF BEFFEEFF
STZ empty —777 FFFF BEEREEEE BEESEADTY
ST2 empty =777 FFFF BEEREEEE BEEEEEGE
5T4 empty —-777? FFFF BEERGEEEE BEECESDZ
STE empty —777 FFFF BEEAAEEE BREEHEEE
STE empty —777 FFFF BEEREEEE BEAEEEEE
ST? empty E. BGEEBBBBBBBBBBBBBBB
3218 ESPUDEZDI
FST BE28 Cond @ BB A Err@ 8 18 B8 @88 [(GT)
FCW 1272 Prec MEAR,52 Mask 11686@1an@

Restart Ollydbg Ctrl + F2 on the keyboard or press Restart button on Ollydbg & remove the Breakpoint and
press (F9) on the keyboard to run the program or Play button on Ollydbg, when the nagscreen appears - Enter
your Registration Name & Registration Code, look at the picture below.

Reversing Business Translator 9.00 by kaira

ARTEAM EZINE ISSUE 1Y
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

Registration

Business Translator iz Shareware. If you
continue uzing her, beyond a tnal period of
15 dayz, you are encouraged to pay a small
registration fee. The purpose of this mezzage
iz to remind you.

The registration fee i1z 88 USD or 79 Euro.
Once you register, you will soon receive the
registration code that converts future shareware
versions to full verzions registered to pou.

OF course, this meszage dizappears after you
register Buzinezs Translator.

Haw ta Hegisterl Buy Mow | Fegister Later

Reqistration Hame Ikalra

Registration Code |2nznnn4-sas1 BI7251|

Reaqizter Mow |

15 Dayz Tral Period / 15 Dayz Left

Click Register Now button, look at this picture below.

Registration |X|

Business Translator iz Shareware. If you
continue using her, beyond a tnal period of
15 days, you are encouraged to pay a small
reqistration fee. The purpose of this meszage
iz to remind you.

The registration fee iz 88 USD or 79 Euro.
Once you reqgister, you will zoon receive the
registration code that converts future shareware
versions =y
[Tty Registration Success! |X| I you
register

Thank wou For wour support.,
How ta B '-.-'-.-'e_will work even harder and
nokify wou Future releases.

L

e Later |

Registra

Registration Code I

Fegister Mow

15 Days Tnal Penod / 15 Days Left

Registeration Success! Click OK button.

Reversing Business Translator 9.00 by kaira

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

Your can close Ollydbg now because we've finished serial fishing Business Translator 9.00. Open BusiTran.exe
and click Help -> About... button from the menu, look at this picture below.

About z|

Business Translator

for Document, letter, invoice
FAX, report, contract, etc [TH)

Reagiztered To:

kaira

Yerzion 9.00 [Build 7738)
Online Technical : supporti@zhangduo.com
Acknowlege To: Alta¥ista.com services

swport | [[OK |
[C] Copynight 2000-2007 Hunterzoft
All Rightz Reserved Worldwide

Job Well Done!!!
5.3 CONCLUSION

If you like the program and going to use it please purchase it, because programmers rely on the income in-
order to continue updating their softwares for us!

Reversing Business Translator 9.00 by kaira

RRTEAM EZINE ISSUE (I}

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

6 EXECRYPTOR FOR DUMMIES OR HOW TO UNPACK EXECRYPTOR 2.4 WITHOUT
HAVING A CLUE WHAT YOU ARE DOING BY HAGGAR

6.1 INTRODUCTION

Hi and welcome to this small ExeCryptor unpacking guide!

You may wonder why another ExeCryptor paper? To tell you the truth, I'm not interested in writing another
ExeCryptor paper (I have already wrote four of them), but Shub-Nigurrath asked me to contribute new edition
of ARTEAM ezine. So why not contribute.

This guide will not explain ExeCryptor in details. Actually, it will not exaplain ExeCryptor at all. This guide will
exaplain how to unpack ExeCryptor with as less possible knowledge about unpacking.

Happy unpacking!
6.2 CONTENT

1. Requirements for this guide

2. Preparations before loading target in Olly
3. Loading target in Olly

4. Using script to kill anti-debug tricks

5. Finding OEP

6. Using script to decrypt imports

7. Dumping to hard disc

9. Reference material

6.3 [1] REQUIREMENTS FOR THIS GUIDE

e OllyDbg 1.10

e Windows XP (or some other NT based windows)
e OllyScript or ODbgScript plugin

e lordPE

e ImpREC

e Some hex editor

ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are 4
doing by Haggar

RRTEAM EZINE ISSUE (I}

ARTEAM EZINE ISSUE 11l REV.1

AiTeam

I Reversing : I'm just'doing my hobby]

You will also need some target application protected with ExeCryptor. Any target should do, it also doesn't
mathers exact version of ExeCryptor. | will use "mp3tag 5.4 lite" that is protected with ExeCryptor 2.4.

6.4 [2] PREPARATIONS BEFORE LOADING TARGET IN OLLY

e Disable all plugins that's purpose is to hide Olly from various anti-debug tricks. Plugins such as
HideOlly, OllyAdvanced, etc... can be detected by ExeCryptor.

e Set Olly to break at system breakpoint (check image below):

E Debugging options

Enmmandsl Disasml CFU | Hegistersl 5
Security I Debug Ewents | Exceptions I

b ak.e first pausze at:
¥ System breakpoint
= Entry point of main madule

 winkdain [if location is known)

[Ereak on new module [DLL]

[" Break on module [DLL] unloading
[BEreak on new thread

™ Break on thread end

[Break on debug string

e Ignore all exceptions and add COO0001E to custom ones (check image below):

EDEhugging opkions

Commands I Digaszm I CPU | Hegistersl Stack I Anal
Security I Debug I Ewent: Exceptions | Trace I !

¥ Ignore memorny access vidlations in KERMEL3Z

|grore [pags to program) following excephions:
[V INT3 breaks
¥ Single-step break
[V Memomn access violation
¥ Integer division by O
¥ reealid or privileged instruction
¥ &l FPU exceptions

¥ lgnore also following custom exceptions or ranges:

CO0000 E (INVALID LOCK SEQUENCE] ﬂ

ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are 25
doing by Haggar

RRTEAM EZINE ISSUE (I}

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AiTeam

6.5 [3] LOADING TARGET IN OLLY

Now, after we properly configured Olly, we can load target. Since we set Olly to break at system breakpoint,
we will be in ntdll.dll:

OllyDbg - mp3tag.exe

File ‘iew Debug Plugins Options Window Help

Sl x| [l w34 kL] 4] =+ L|E[M[T|wWE

CPU - main thread, module ntdil

EEETEE c3 RETH
FCopizoe| DEFF MOU EDI,EDI
rooalaad 28 HOF
rooE1235 L] HOF
TCoE1238 L] HOF
TCoE1237 L) HOP
TCoE1233 LS| HOP
TCoE1239 CC INTS
FCaB1Z3A| . C3 RETH
TCoE1236 26 HOF
TCoE1230c SEFF Mo EDI,EDI
TCoE123E L] HOF
TCoE123F L) HOP
ctyglzdel 9@ NOP

That is OK. But Olly is not yet ready to debug target. Hit Alt+B to open breakpoint window:

_loix

Address | Modu Le | Active | Disassembly | Comment -
BEIFS47E| mpStag One-shot CALL mp3tag. BBSF33EE

=

In this window you can see all breakpoints that are present. OllyDbg automaticly places one temporary
breakpoint to the EntryPoint of debugged program. Delete this bp by selecting it with right-click and chosing
"Remove Del".

As a final step, delete all possible hardware or memory breakpoints too.

6.6 [4] USING SCRIPT TO KILL ANTI-DEBUG TRICKS

Now we are ready to use first script that will kill all ExeCryptor anti-Olly tricks. First script is:
ExeCryptor 2.x OEP.txt

Although this script is called OEP script, it will not find OEP. That name is left from the beggining when |
thought that | will write script for finding OEP on all 2.x ExeCryptor versions. But that looks impossible.
ExeCryptor code is different even in same versions of protection.

But this script will kill all tricks that ExeCryptor uses to detect or kill Olly. After using it, you can hit Shift+F9 and
your target should run fine under Olly.

ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are F4I3)
doing by Haggar

ARTEAM EZINE ISSUE 1Y
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AiTeam

So, for the slow ones: Don't cry at forums that script doesn't work! It will not find OEP! It will kill all anti-debug
traps and tricks! You have to find OEP manually.

6.7 [5] FINDING OEP

Ha! Now is time for you to use your skills and experience. There are no generic way to find OEP and ExeCryptor
code is impossible to trace. For this step you need to have some experience.

Do you know how OEP of different compilers look? Any of these looks familiar:
Visual Basic

Deplhi

Borland 1999 C++

MSVC++ versions

etc...

If you have experience and you could recognize these OEP's, then you will have no problem finding OEP in
ExeCryptor protected applications. If you don't have idea what I'm talking about, than you are lost. Sorry, no
help for you.

Since it there is no generic way to find OEP, we will try to find OEP by using our experience. First script has
killed all anti-debug tricks and we can run application under Olly. Run it, then pause it (F12), and let's have look
at it. If we go to first section, which is at 401000 in my target, we can see that app in my example is compiled
in Deplhi.

Where Deplhi applications have OEP? Always at the end of code section. So | scroll down to the end of code
section in order to find OEP. But instead of finding OEP, | see some weird jumps and calls:

ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are ¥/
doing by Haggar

EF“E Wieww Debug Plugins Options

ARTEAM EZINE ISSUE 11l REV.1

RRTEAM EZINE ISSUE (I}

Window Help

I Reversing : I'm just'doing my hobby]

HESF3E3E BEaAS 49558068 HOD BYTE PTR D5:[ERA+&B0EE5459], CH

HESFIE41]| 49 OEC ECH

HESF3BE42| EE FUSH EEF

HEEFZE42| BEZ477 AOD BYTE PTR DS:CEDI+ESI#21,AH

HEEF3B45| EC FOF ESP user3d2. rr0493F5
HEEFSE47 | Ba0d AOD AH, OL

BEEFZE49 |~ 76 BC JBE SHORT mp3tag.BB85F3BA7

HESFSBE4E| BEFg ADD AL, EH

HESFZE40|~ 72 BE JHE SHORT mp3tag. 8BEFIEAD

HESFSE4F| B89473 SEADEEAN| AOD BYTE PTR D5: [EEX+ESI#Z+5E1,OL

HESFSESE| BEDE HOD BYTE PTR D5:LCERX].AL

HEEFSBES| B4 332 Mo f

HESFIBEA| &F FOP EDI user3d2. rr0493F5
HEEFSBEE| BEES AOD CL

HEEFSBED| EA FUSH ERX

HEEFZEEE| &V:ld D@ AOC AL, & Superf luous prefix
HEEFEBE1| ES EBA41480 CALL mp3tag.BE73EE45

HESFIBEE| B2 D2BC450F MY ERX, OF45ECO2

HEEFSBEE| ES veD031560 CALL mp3tag.BE7SEEES

HESFSEVE|-E2 166851360 P mp3tag. BEY 24838

HEEFSEFS| SBCY MOl ERE, EOI

HEEFZEFY| EZ 4935FEFF CALL mp3tag.BEE47FICE

HEEFZEFC|-E2 2BCES13@0 JMP mp3tag. BT IAEAC

HEEFSEE1 | —E2 9ECE1360 JMP mp3tag. BETIE424

HEEFSBEE| —ER FCFE12E0 JHMP mp3tag. BETIE467

HESEFSBSE| —E? &62CEBFAR JMP mp3tag. OBEFESF2

HESFIES9E| CLED 18 SHR ECH, 13

HESFSESS] 323C24 MoV OWoORO PTR 55:CESF1,EDI

HESFIE9G| SF FOF EDI user32. rrO493F5
HESFIESY| 294 HapP

HEEFSEZE| BE 911A0ESF Mal EAX, GFOE1A91

HESFIE90| 53 FUSH EBE=X

HEEFSEY9E| -E2 2CO2E2EH JMP mp3tag. BEGE13CF

HEEFSBAS| —BFEC DZDEAYEs JL mp3tag. BEET1AVE

HEEFSBAY | ~E2 SDAETYFEFF JMP mp3tag. 085043686

HESFSEBHE| 2303 #OR EDX,EBX

HESFIEEA| FrOl HAOT ECH

HEEFSEEZ | —E? SEEC1&E0 JMP mp3tag. AATSISEC

HESFSEEY| ES F1E6E811@0 CALL mp3tag.B8vER4A0

HEEFSEEC| 2EBED424 MOW ERX, OWORO PTR S55:LCESF] user3d2. rr0493F5
HEEFZEBEF| EZ CC211&68H CALL mp3tag.B87Es098

HESF3BC4| C2 RETH

HEEFSBCE | -E2 &6ECH1&ED JMP mp3tag. BETLESIE

HEEFSBCA| 20 F&AbEaan SUE ERX, BF&

HESFSBCF| BEES ADD CL,CH

HESFSEDL| BZ2 20FSFFED MY ERK, BOFFFS20

HESFSEDE| CE ESZAAZ ENTER ZRES, BAZ2

HESFSEOA| SEDE MOW ERX,OWORD PTR DO5:LCEAA]

HEEFSBOC| 2BE1S FOZ15CHEE MOU EDX, OWORD PTR O5:[CECE1FH] mp3tag. OESCE1BC
HEEFSBEZ| EZ E19&ERFF CALL mp3tag.B84302C8

HEEFZBEY| SBHD &4 7BEHEE MOW ECX,OWORD PTR D5:[&H7EE4] mp3tag. BEG 1 6aEC
HEEFSBED| Al RA4FF&EED MOW ER,OWORD PTR D5:[&H7FA4]

HEEFSEFZ| SEDE Mol ER,OWORD PTR D5:LCEAX]

HEEFSEF4| S8EBE1S 24B15EEE MOU EDX, OWORDO PTR D5:[SEE194] mp3tag. OESEE1ER
HESFZEFA| EZ C92SERFF CALL mp3tag.B84302C8

HESFSEFF| SBoD DEVRCDEE Moy ECH,OWORD PTR DO5:LC&@vADE] mp3tag. OBEECTFS
HEEFICHES| AL A4FFeEEn MOW ERX,OWORD PTR D5:LC&BFFA4]

HESFICEA| SEDE MOW ERX,OWORD PTR DO5:LCEAAX]

HEEFSCHEC| 2BE1S DH4E5AEE MOW EDX, OWORD PTR O5: [EA4506] mp3tag. OESA4E1C
HEEF3C12| EZ B195ERFF CALL mp3tag.B84902C8

HEEF2C1Y| SBHD &E89260EE MO ECH,OWORD PTR D5:[&H8268] mp3tag. HHEECEEY
HEEFECI0N AL R4FF&BEE MO ERX.OWORD PTR D5:[C&EFFA4]

What we got here is Stolen OEP Code. Instead OEP, we see some weird code. By mine experience, ExeCryptor
replaces first opcode at OEP with long jump (E9 xxxxxxxx) that leads to obfuscated code. This jump at OEP will
never be executed! That jump is there just for a saftey purpose in case that something tries to use that code.
Real OEP code is obfuscated at address where that jump points.

How we can find where is stolen OEP code? First we need to find long jump. Code in CPU looks bad because
Olly didn't analyse it and we cannot see that jump right away. We can see some jumps and calls that leads to
ExeCryptor sections. Above them code looks really messy. From there | search binary for first E9 byte:

ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are
doing by Haggar

ARTEAMIEZINE ISSUE IN

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AASFIESA
BASF3IESE
BASFIESD
BESFZESE
BESFIE61
|15 [==
BESFIBEE
BESFIEFA
BESFIEFE
BESFIEFTF
BESFIEFC
BESFIES]

SF

BEEZ

=15

g7:ld @A

EZ EBR414B0
B2 D3BC4S5DF

EZ VeD21560
—E2 16651260
2BCT

EZ 493&FEFF
—-E9 ZBCE1386
~E3 981300

Byte E9 is there. | patch 00 byte before E9 to see

BESF2IBEA
HESF 2ESE
BASF3ESC
HESF3EGE1
BESF ZBEE
BESFIBER
BESFIEFH
BESFIEFE
BESFIBFY
BESFIETC
BESF3ES1

5F
L)
-EZ
2]
=15

SEAGY 1488
EBR4 1488
D2EC450F

EZ VeD31ShA
—EE %EBEISBB

SBC

EZ2 4936FEFF
—-E2? ZBCElzea
—-E2 2ECE1388

FOP EDOI

AODO CL,CH

FUSH ERA

AOC AL, H

CALL mp3tag.@E@73ER4E
MOW ERX, OF45BCO3
CALL mp3tag.HEFEHEES
JMP mp3tag. 08724636
MO ER,EDI

CALL mpStag.@@5471CE
JHMP mpEtag. BEFIEEAC
AP mRgvas. Dar3edze

better:

FOP EDI

MHOP

JMP mp3tag. A7 3AZEL
CALL mp3tag.AE73EA46
MOL ERX, OF4EECDS
CALL mp3tag. BE7SEEES
JHMP mp3tag. BET 24638
MU ERX,EDI

CALL mp3tag.BES4FICE
JHMP mp3tag. BE7SBBAC
JHMP mp3tag. BA7 368424

Now it's clear that this jump leads to section with ExeCryptor code. And by mine logic, that code should be

stolen code:

BEFIAZB1| ES2 BIFEFFFF
HE7IHZES| 2E:98
BEVIAZES(42
BETIAZED(16
BETIAZEA| 26:07

~EB 35

BETIAZEC

BE7IAZEE(57
63 SF0ES17F
ES ZAFOF3FF

BE7IAZEF

BETIHZCY
20
1A87 &281EFET
B9Fs

BE7IAZCT
BETIAZCA
BETIAZ0A
BE7IAZ02
BETIAZ03
BE7IAZ09
BETIAZ0E

BEFIAZ0F
ARFIOZFA

1]
S1CY_AD44E95Y
~EF 47718288

=1s]
~E3 FCECHEER
oo

CALL mp3tag.@E7330B7
CWDE

ITHC EDW
FUSH 53

POP _ES

LOOPDHE SHORT mpStag. BEF2IAZF2
PUSH EDI

PUSH FPFE10557

CALL mp3tag.A8673FF3

POPFD

SEE AL,.BYTE PTR DS:[EDI+FEF21621]
OR EBP,ESI

AOD EDI.SYES44AD
JHMP mp3tag. BA7E1425
POP EDX

JHMP mp3tag. B@73IFFER
FlIEH FRE

What now? Reastart application in olly, remove all breakpoints again, use script for killing traps again.

Now, go to that address where we think that stolen OEP should be. You should see nothing but zeros there
now. Place memory breakpoint on access at that line. Keep pressing Shift+F9 untill you break there. After
couple stops in decrypt procedures, breakpoint check (yes it checks for beakpoint on that address), | stoped at

that line. Fact that there is breakpoint check on
stack, we will get final confirmation:

that line is first confirmation of stolen code idea. If we check

BE12FFCE
BE12FFCC
BE12FFOA

BE12FFO4
BE12FFOS
BE12FFOC
BE12FFER
BE12FFE4
BE12FFES
BE12FFEC
BE12FFFRA
BE12FFF4
BE12FFFS
BE12FFFC

TCE1E04r
FLO1ETEE
FFFFFFFF
FFFDERE0
SEE4ERIE
BE12FFCS
SEAEIESS
FFFFFFEF
FLEIIIFS
FLE1E0SS
BERBEHEE
BEEBEEEE
BEEBEBEE
BEEFS47E
BEEBEEEE

RETURM to kernel32.7C21604F
ntdll.7Co1E7EE

End of SEH chain
S5E handler
kernel32. FCE16055

mp3tag. {Modu leEntryPoint

Stack looks like one in some target that is just loaded in Olly.

ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are

49
doing by Haggar

RRTEAM EZINE ISSUE (I}
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AiTeam

We have found stolen code. Btw, don't try find original opcodes. It is impossible.

6.8 [6] USING SCRIPT TO DECRYPT IMPORTS

We have found OEP, or stolen code, and now we have to find imports. For this we will use my second script:
ExeCryptor 2.x Delphi IAT.txt

This script finds imports in Delphi, Borland and MASM compiled application. Those applications use jumps to
access imports (MSVC++ use calls). Let's see example in my target:

AE4E] 255| -FF25 20336688 | JMP DWORD PTR DS: [66332C1 mp3tag. 88735906
BE4E122E| SBCE MO EAK, EFX mp3tag. @A73FE98
AE4E1 298| -FF25 22336688 | JMP ODWORD PTR DS: [Ee633281 mp3tag. @A733CT2
BE4E1 235 SBCH MOL EAK, EFE mp2tag. BEFIFE9R
BE4E1 292 -FF2E 24336688 | JHMP DWORD PTR DS5: [663324] mp3tag. BA7 1 FERR
BE4E1229E| SBCA MO ERX, ERX mp3tag. BAFIFS90
BE4E12A8| -FF25 28336688 | JMP DWORD PTR DS: [e633281 Mp3tag. 88729106

My script for fixing imports needs to be changed a little for evenry new target. If you open script in Notepad,
you will see this line:

find addr,#ff25??229999# //THIS LINE NEEDS TO BE CHANGED!!!

That line is search pattern that finds all possible import jumps in code section. You can notice that import
jumps in my target have these bytes (check image above):

FF25 xxxx6600
So that is byte mask for my example and | will set script to find those paterns:
find addr,#ff25????6600# //THIS LINE NEEDS TO BE CHANGED!!!

Now script is ready to find imports. Just use it. Wait untill it finishes (that can last).

6.9 [7] DUMPING TO HARD DISC

e If script for fixing imports has finished without error, then you can use ImpREC to retrieve imports.
e Dump target to hard disk with LordPE or any similar dumping engine.

e Rebuild imports with ImpREC.

ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are =[0)
doing by Haggar

RRTEAM EZINE ISSUE (I
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AiTeam

And that is it! Dumped target already works (at least in my case). But there could be some problems:

e First, you should change TLS settings in PE header. | will not explain here how and what to do it. | have
already explained that in one of my previous tutorial. Check references.

e Second, if target has stolen code, it will probably work only on machine where it was dumped. | have
already explained that problem in paper about official ExeCryptor crackme. Check references.

6.10 [9] REFERENCE MATERIAL

Here you can find scripts for unpacking ExeCryptor and some extra info about protection. Anti debug tricks,
how scripts work, etc... all can be found in my previous tutorials. Don't be lazy. Read them.

At BIW reversing (http://www.reversing.be/) you can find four tutorials about ExeCryptor:

e "ExeCryptor official crackme" - Deplhi target, full protection, ExeCryptor 2.1.17, very complete
tutorial.

e "Unpacking ExeCryptor 2.2.4" - Borland 1999 C++ target, no stolen code, completly removing
ExeCryptor layer.

e "ExeCryptor 2.2.50 - unpacking MSVC+ target" - Unpacking MSVC++ target.

e "ExeCryptor 2.3.9" - just some thoughts on this version.

6.11 SCRIPTS

e Script "ExeCryptor 2.x OEP.txt". Just paste it in some text file. Script is also full of comments, so you can
learn how it works:

e Script "ExeCryptor 2.x Delphi IAT.txt":

e Script "ExeCryptor 2.x MSVC++ IAT.txt". This script works little different. It is explained in one of previous
tutorials:

ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are [Ejl
doing by Haggar

http://www.reversing.be/

ARTEAMIEZINE ISSUE IN

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

7 OCRTOOLS WALKTHROUGH OF KEY CHECK ROUTINE BY ANHS!RK

7.1 INTRODUCTION

The following text is taken directly from Application (www.ocrtools.com).

OCRTools presents state-of-the-art Optical Character Recognition products developed entirely within the
Microsoft .Net platform. Incorporating Neural Networks, Artificial Intelligence, and trained with over 4 million
font variations; our products incorporate the latest optical character recognition technology to solve your OCR
problems. And we offer OCR and a Barcode API/SDK, as well as Desktop Solutions.

All source code has been written in Microsoft VB.Net & C#.Net and compiled as Safe and Managed Code in the
Microsoft .Net Framework.

7.2 TOOL REQUIRED

The main tool you ever required is BRAIN © for doing some Logic and Reasoning. You will also need Reflector
(the version | used was 5.0.50.0).

7.3 WALKTHROUGH

We need to find the following fields
e Product Name
e Registration Codes

e Activation Key

OCR Tools Walkthrough of Key Check routine by Anhs!rk

http://www.ocrtools.com/

ARTEAM EZINE ISSUE 1Y
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

Customer Name & Order ID can be any thing

% OCRTools [Activate License] o] 4|

Product M ame: ||

Cusztomer Mame: I

Order 1D: I

Registration Codes: I
Computer 10 |9049??52

—Activation

1. You can request the Activation Key automatically via Internet
connection to the OCRT ools Web site:

Obtain Activation Key automatically via Internet |

2. In the caze thiz computer iz not connected to the Intermet, pleaze
wigit the following web page from another Intermet-enabled computer:
hittp: ¢ v, ocrbools, comfid activate. aspy

or request the activation text by E-Mail [pleaze provide both
Registration Information and Computer [D]:

mailto: support@ocrtools. com

Activation Key: I

Close |

Okay let’s find out what is Product Name.

= «3 Ackivate Open the app the in Reflector and open
= W Activate.exe the following node as shown in figure
[-3] References Note: Assembly Activate must be loaded
{r- into the Reflector
= {} Ackivate
= ‘ch Activate The code that looks more promising to us
¥} Base Types is the Method that returns a Boolean
™ Detived Types value
g char(d
JQ Activate_Load{Object, EventArgs) @ Yoid
X chAactivationkey_Click{Object, Eventargs) @ Woid
ii,a cbiZlose_ClickiObject, Eventargs) @ Void
;@ Dispose(Boolean) ; Yoid
JQ' Initializeomponent! ; Yaoid
:FF [lActivate_LinkClicked{Object, LinkLabellinkClickedd
2% Maini’ : void
;,S Werify() ¢« Boolean

OCR Tools Walkthrough of Key Check routine by Anhs!rk

ARTEAM EZINE ISSUE 1Y
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

Code:
Private Sub cbActivationKey Click(ByVal sender As Object, ByVal e As EventArgs)
Try

Dim prompt As String = ""
Dim service As New Service
Me.cbActivationKey.Text = "Retrieving Activation Key, Please wait..."
Me.txtActivationKey.Text = "Retrieving Key, Please wait..."
Me.cbActivationKey.Enabled = False
Application.DoEvents ()

Me.txtComputerID.Text = Me.CZ.GetComputerID
' The VerifyRegistration Method looks promising

' If the Property Registered is set to True we branch to Else
If Not Me.CZ.Registered Then
Me.txtActivationKey.Text = ""

Interaction.MsgBox ("Invalid Registration Information",
MsgBoxStyle.OkOnly, Nothing)

Else
' This is a custom webservice which retrieves the Activation Key from the WebSite

' when the Registration Codes are valid
prompt = service.GetActivationKey (Me.txtProductName.Text.Trim,
Me.txtCustomerName.Text.Trim,
Me.txtOrderID.Text.Trim,
Me.txtRegistrationCodes.Text.Trim,
Me.txtComputerID.Text.Trim)
If ((prompt.Length > 0) AndAlso (prompt.Substring(0, 1) = "*")) Then
Me.txtActivationKey.Text = ""
Interaction.MsgBox (prompt, MsgBoxStyle.OkOnly, Nothing)
ElselIf (prompt.Trim.Length = 0) Then

Me.txtActivationKey.Text = ""

OCR Tools Walkthrough of Key Check routine by Anhs!rk

ARTEAM EZINE ISSUE 1Y

I Reversing : I'm just'doing my hobby]

ARTEAM EZINE ISSUE 11l REV.1 ﬁ
i

Interaction.MsgBox ("Invalid Activation Key", MsgBoxStyle.OkOnly,
Nothing)

Else

Me.txtActivationKey.Text = prompt
' The Verify is the Method which checks the Activation key is valid or not

Me.txtActivationKey.Text = ""

Interaction.MsgBox ("Invalid Activation Key",
MsgBoxStyle.OkOnly, Nothing)

Else

Interaction.MsgBox ("Successfully obtained Activation Key",
MsgBoxStyle.OkOnly, Nothing)

End If
End If
End If
Catch exceptionl As Exception
ProjectData.SetProjectError (exceptionl)
Dim exception As Exception = exceptionl
Me.txtActivationKey.Text = ""

Interaction.MsgBox ("Error creating Activation Key", MsgBoxStyle.OkOnly,
Nothing)

ProjectData.ClearProjectError ()
Finally
Me.cbActivationKey.Enabled = True

Me.cbActivationKey.Text = "Obtain Activation Key automatically via
Internet"

End Try
End Sub

Ok | followed VerifyRegistration Method and landed in the Assembly GF

OCR Tools Walkthrough of Key Check routine by Anhs!rk

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

= i} GF
% Autoscalelmage
% Barcode
=F BarcodeTypes
% BMP
“¢ BPN
=F CaseType
% Character
% Characteristics
% CharacterItemSort
= % Chez
&) Base Tvpes
‘g char()
fg char(Ink32)
-L-i,a GetASCIICounkString) © Ink32
‘ig GetComputerIDd) : String
-L-i,a GetInfol() @ String
-L-i,a GetInfoZ() @ Skring
-L-i,a MormalizeIldString) @ Skring
ig VerifyActivationkey(String, String, String) : Boolean
‘ig VerifyReqgistration(String, String, String, String) : Boolean
“ Artivated : Boolean
“ Registered : Boolean
50 A5 AukoscaleImage
50 mackivated : Boolean

E T [

The VerifyRegistration and VerifyActivationKey are almost identical
Public Function VerifyRegistration (ByVal pProductName As String,
ByVal pCustomerName As String,
ByVal pOrderID As String,
ByVal pRegistrationCodes As String) As Boolean
Try
Me.AS = New AutoScalelImage ((DateTime.Now.Day * DateTime.Now.Month))
Me.AS.ProductName = pProductName
Me.AS.CustomerName = pCustomerName
Me.AS.OrderID = pOrderID
Me.AS.RegistrationCodes = pRegistrationCodes
Me.mRegistered = VENASIVETIEy
Return Me.mRegistered
Catch exceptionl As Exception
Me.mRegistered = False

Return False

OCR Tools Walkthrough of Key Check routine by Anhs!rk

ARTEAM EZINE ISSUE 1Y
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

End Try
End Function
Public Function VerifyActivationKey (ByVal pProductName As String,
ByVal pRegistrationCodes As String,
ByVal pActivationKey As String) As Boolean

Try
Dim computerID As String = Me.GetComputerID
If (computerID.Trim.Length = 0) Then

Return False

End If
Me.AS = New AutoScaleImage ((DateTime.Now.Day * DateTime.Now.Month))
Me.AS.ProductName = pProductName
Me.AS.CustomerName = computerID
Me.AS.OrderID = pRegistrationCodes
Me.AS.RegistrationCodes = pActivationKey
Me.mRegistered = _
Return Me.mRegistered

Catch exceptionl As Exception
Me.mRegistered = False
Return False

End Try
End Function

From the above code it is obvious to us that the Method Verify is Important to us let break it down. Before

venturing into the Method let me show what the statement _
AutoscaleTmage ((DateTime.Now.Day * DateTime.Now.Month))is doing.

Public Sub New (ByVal pZ As Integer)

Me.mSalt0 = "Gregory"

Me.mSaltl = "Joseph" ‘Keep these in Mind
Me.mSalt2 = "Matthew" ‘We might need them
Me.mSalt3 = "Kalispal" ‘
Me.mTargetPhrase = "ActionJackson" ‘

Me .mRandomGenerator = New RNGCryptoServiceProvider

OCR Tools Walkthrough of Key Check routine by Anhs!rk

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

‘Hmmm SHA1 has been selected as HashAlogrithim
Me.mHash = New SHAlCryptoServiceProvider
Me.mProductID = &H3E7

Me .mDemoName = "Demo"

Me .mProductName = "Demo"
Me.mCustomerName = "Demo"

Me .mOrderID = "Demo"
Me.mRegistrationCodes = "Demo"
Me.mActivationKey = ""

Me.INVALID = True

Try

If (pZ <> (DateTime.Now.Day * DateTime.Now.Month)) Then Throw New
GF _RegistrationException("Invalid registration keys. ")

Me.INVALID = False
Catch exceptionl As Exception

Throw New GF RegistrationException("OCR is not registered. ")
End Try

End Sub

Now I'll break down the Method Verify
Public Function Verify() As Boolean
Try
If Me.INVALID Then Throw New Exception("This product is not registered. ")

‘ Finally we find out that the ProductName must be one of the following 4 strings and only 3 strings are valid

Dim str As String = "StandardOCR"

Dim str2 As String = "StandardBar"
Dim str3 As String = "CombinationOCR"
Dim str4 As String = "Demo"

Dim lList As String = ""
Dim aSCIICount As Integer = 0
‘ Here the Properties which are assigned earlier turned into UPPER CASE and assigned to local variables

Dim str7 As String = Me.mProductName.ToUpper.Trim

Dim str8 As String = Me.mCustomerName.ToUpper.Trim

OCR Tools Walkthrough of Key Check routine by Anhs!rk

RRTEAM EZINE ISSUE (I
ARTEAM EZINE ISSUE 11l REV.1

AiTpam

I Reversing : I'm just'doing my hobby]

Dim str9 As String = Me.mOrderID.ToUpper.Trim
Dim mRegistrationCodes As String = Me.mRegistrationCodes
Me.mRegistered = False

Me.mProductID = &H3E7
‘ The str7 contains our entered ProductName and this is compared with the above predefined ProductName
‘string constants. We get a unique number based on the ProductName we choosed earlier

If (str7 = str.ToUpper.Trim) Then Me.mProductID = 0

1
=

ElseIf (str7 = str2.ToUpper.Trim) Then Me.mProductID

Il
N

ElseIf (str7 = str3.ToUpper.Trim) Then Me.mProductID
Else

If (str7 <> str4.ToUpper.Trim) Then Throw New
GF RegistrationException("Invalid product name. ")

Me.mProductID = 3
End If
‘ The code starting from here is most important because most of the checking is done here
‘ Look here do the type name salt ring any bell

‘1 recommend you to look at these Method. Click GetSalt to launch the Reflector

Dim salt As String = Me.GetSalt (Me.mProductID)
‘ Here HashString
1lList = Me.HashString((salt & str8 & str9 & Me.mTargetPhrase))
‘ Remember IList is the Refernce HASH which is cross checked with the HASH’s generated by entered
‘ RegistrationCode and ActivationKey, and here too GetASClICount
aSCIICount = Me.GetASCIICount (1lList)
‘ The below condition require that the Registration code must be of length 0x13 or 19 characters in length

‘CHECK 1

If (mRegistrationCodes.Length = &H13) Then

‘ The below condition checks for the hyphens in some predefined positions
£ XXXX-XXXX-XXXX-XXXX is what our code must look like

‘ CHECK 2
If (((mRegistrationCodes.Substring(4, 1) <> "-") OrElse
(mRegistrationCodes.Substring (9, 1) <> "-")) OrElse
(mRegistrationCodes.Substring (14, 1) <> "-")) Then

Return False

End If
‘ The following code removes the hyphens and once again checks its length and it must be equal to 0x10 or

‘16 characters
‘CHECK 3

OCR Tools Walkthrough of Key Check routine by Anhs!rk

code://GF:4.1.2719.32931/GF.AutoScaleImage/GetSalt(Int32):String
code://GF:4.1.2719.32931/GF.AutoScaleImage/HashString(String):String
code://GF:4.1.2719.32931/GF.AutoScaleImage/GetASCIICount(String):Int32

RRTEAM EZINE ISSUE (I
ARTEAM EZINE ISSUE 11l REV.1

AiTpam

I Reversing : I'm just'doing my hobby]

Dim strll As String = mRegistrationCodes.Replace("-", "")
If (strll.Trim.Length <> &H10) Then
Return False

End If

‘ The below condition checks that the first 4 characters in code must be number and divisible by 13

‘ This makes our serial look like NNNN-XXXX-XXXX-XXXX i.e., 0013-XXXX-XXXX-XXXX or
9997-XXXX-XXXX-XXXX

‘CHECK 4

‘ QUICK NOTE: The serial cannot contain Hexadecimal even tough we can find numbers upto OXffff

‘ because the Conversion Method doesn’t specify the base to convert from this limits us to use decimal
‘numbers only

If ((Convert.ToInt32(strll.Substring(0, 4)) Mod 13) <> 0) Then
Return False
End If
‘ If we made up to this mark the str11 will be assigned the 12 characters form the registration code
strll = strll.Substring (4, 12)

‘ Look HashString is called once again but this time with Registration Code that we entered

Dim strl2 As String Me.HashString((salt & str8 & str9 & strll))

‘ GetNumberCount?
‘Ans: Click Mee......

Dim num3 As Integer = (Me.GetASCIICount (strl2) +
Me .GetNumberCount (strll))
‘ Finally we are only ONE condition away from TRUE
‘ The First character in Reference Hash and our Registration Code/Activation Key needs to be equal
‘ plus num3 must contain a number that is to be same as aSClICount
‘How are we going satisfy these two

If ((num3 = aSCIICount) AndAlso (strl2.Substring(0, 1) =
1List.Substring (0, 1))) Then

Me.mRegistered = True
Return True
End If
End If
Return False
Catch exceptionl As Exception
Return False

End Try
End Function

There are enough hints for us to proceed. If you examined the code where | provided links now | am going
show the code snippet which generates the required Registration Code and Serial

OCR Tools Walkthrough of Key Check routine by Anhs!rk m

code://GF:4.1.2719.32931/GF.AutoScaleImage/GetNumberCount(String):Int32

ARTEAM EZINE ISSUE 1Y
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

int counter = 0;

for (ulong i = 100000000000L; i < 999999999999L; ++1i)

{
string CryptHash = HashString(salt + text8 + text9 + i.ToString());
if (CryptHash[0] == 1List[0])
{

int check = GetASCIICount (CryptHash) + GetNumberCount (i.ToString()) ;

if (check == aSCIICount)
++counter;
if (check == aSCIICount)

MessageBox.Show (CryptHash + " <-—=-> " + (i));

}

MessageBox.Show (counter.ToString()) ;

I choose the numbers 100000000000L and 999999999999L because these are 12 digits in length and the
Method GetNumberCount only work on decimal numbers

OCR Tools Walkthrough of Key Check routine by Anhs!rk

RRTEAM EZINE ISSUE (I
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AiTeam

8 THE STRANGE CASE OF DBG_PRINTEXCEPTION_C & DBG_RIPEXCEPTION BY MOID

8.1 INTRODUCTION

Hidden deep in the jungle we call the Internet, | found a wonderful anti-debugging trick. In a comment on
rootkit.com, dsei shows a trick that is capable of detecting all ring3 debuggers. As far as | know, this trick is not
used in any protection system nor defeated by any debugger or plugin. In this small essay | will show this trick,
it's cause and how to defeat it.

8.2 TRICK DESCRIPTION

If we raise the DBG_PRINTEXCEPTION_C exception (0x40010006) without a ring3 debugger active, the
exception is treated normally. However, if we do the same with a debugger attached, the debugger gets a
OUTPUT_DEBUG_STRING_EVENT and after calling ContinueDebugEvent, the exception has disappeared.

Obviously this difference can be used to detect ring3 debuggers. As an example, here is the core of my xADT
plugin to check for this:

;First, set up a SEH frame
push seh

push dword [fs:0]

mov [fs:0], esp

mov dword [return code], POSITIVE ;If it's swallowed, a debugger is detected
push O

push O

push 0

push DBG PRINTEXCEPTION C
call RaiseException

pop dword [fs:0]

pop eax

mov eax, [return code]

ret

seh: ;If the exception is not swallowed, there
is no debugger

mov dword [return code], NEGATIVE
XOor eax, eax

ret

The strange case of DBG_PRINTEXCEPTION_C & DBG_RIPEXCEPTION by MOID

ARTEAM EZINE ISSUE 1Y
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

8.3 THE CAUSE

This behaviour is by design. OutputDebugStringA uses it to send messages to the application debugger. The
change from DBG_PRINTEXCEPTION_C to OUTPUT_DEBUG_STRING_EVENT happens in
ntdll!DbgUiConvertStateChangeStructure.

Just take a look at this rebuild source snippet (by Alex lonescu):

/* Any sort of exception */
case DbgExceptionStateChange:
case DbgBreakpointStateChange:
case DbgSingleStepStateChange:
/* Check if this was a debug print */

if (WaitStateChange->StateInfo.Exception.ExceptionRecord.ExceptionCode ==
DBG_PRINTEXCEPTION_C)

{
/* Set the Win32 code */
DebugEvent->dwDebugEventCode = OUTPUT_DEBUG_STRING_EVENT;
/* Copy debug string information */
DebugEvent->u.DebugString.lpDebugStringData =

(PVOID)WaitStateChange-
>StateInfo.Exception.ExceptionRecord.ExceptionInformation[l];

DebugEvent->u.DebugString.nDebugStringLength =

WaitStateChange-
>StateInfo.Exception.ExceptionRecord.ExceptionInformation[0];

DebugEvent->u.DebugString.fUnicode = FALSE;
}
else

if (WaitStateChange->StateInfo.Exception.ExceptionRecord.ExceptionCode ==
DBG_RIPEXCEPTION)

{
/* Set the Win32 code */
DebugEvent->dwDebugEventCode = RIP_EVENT;
/* Set exception information */
DebugEvent->u.RipInfo.dwType =

WaitStateChange-
>StateInfo.Exception.ExceptionRecord.ExceptionInformation[1];

The strange case of DBG_PRINTEXCEPTION_C & DBG_RIPEXCEPTION by MOID

ARTEAM EZINE ISSUE 1Y
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

DebugEvent->u.RipInfo.dwError =

WaitStateChange-
>StateInfo.Exception.ExceptionRecord.ExceptionInformation[0];

}

else

/* Otherwise, this is a debug event, copy info over */
DebugEvent->dwDebugEventCode = EXCEPTION DEBUG EVENT;
DebugEvent->u.Exception.ExceptionRecord =
WaitStateChange->StateInfo.Exception.ExceptionRecord;
DebugEvent->u.Exception.dwFirstChance =
WaitStateChange->StateInfo.Exception.FirstChance;
}

break;

As you see also DBG_RIPEXCEPTION gets a special treatment. By raising this exception you can send a
RIP_EVENT to the debugger. This will make Olly break. Again this exception magically disappears when a
debugger is present.

8.4 THE SOLUTION

With what you know now, it is very easy to find the solution. You might want to try finding it yourself before
reading further.

Seeing how the problem is the special handling of those two exceptions, the trick is to remove that special
handling. We have to make sure that the change to OUTPUT_DEBUG_STRING_EVENT or RIP_EVENT never
happens.

The strange case of DBG_PRINTEXCEPTION_C & DBG_RIPEXCEPTION by MOID

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

The disassembly of the relevant code (in ntdll!DbgUiConvertStateChangeStructure) is this:

lea esi, [eax+0Ch]
mov ecx, [esi]
cmp ecx, 40010006h ;<-— 1s it DBG PRINTEXCEPTION C?
jnz short loc 7C950969
mov [ebx], edi
mov ecx, [eax+24h]
mov [ebx+0Ch], ecx
mov ax, [eax+20h]
and word ptr [ebx+10h], O
mov [ebx+12h], ax
Jjmp loc 7C950A28
loc_7C950969:
cmp ecx, 40010007h ;<-- 1is it DBG RIPEXCEPTION?
jnz short loc 7C950985
mov dword ptr [ebx], 9
mov ecx, [eax+24h]
mov [ebx+10h], ecx
mov eax, [eax+20h]
Jjmp loc_7C950A25
lea esi, [eax+0Ch]
mov ecx, [esi]
cmp ecx, 40010006h ;<-— 1s it DBG_ PRINTEXCEPTION C?
jnz short loc 7C950969
mov [ebx], edi
mov ecx, [eax+24h]
mov [ebx+0Ch], ecx
mov ax, [eax+20h]
and word ptr [ebx+10h], O
mov [ebx+12h], ax
Jjmp loc 7C950A28
loc_7C950969:
cmp ecx, 40010007h ;<-- is it DBG RIPEXCEPTION?

The strange case of DBG_PRINTEXCEPTION_C & DBG_RIPEXCEPTION by MOID

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

jnz short loc 7C950985
mov dword ptr [ebx], 9
mov ecx, [eax+24h]

mov [ebx+10h], ecx
mov eax, [eax+20h]

Jjmp loc 7CS950A25

By patching the red jnz's to jmp, the change will never happen and they will be treated like normal exceptions.
Make sure that the change is in the memory of the debugger, not the debuggee!

8.5 REFERENCES

Post by dsei - http://www.rootkit.com/board.php?thread=3360&did=edge284&disp=3360

Windows Native Debugging Internals - http://www.openrce.org/articles/full view/25

The strange case of DBG_PRINTEXCEPTION_C & DBG_RIPEXCEPTION by MOID m

http://www.rootkit.com/board.php?thread=3360&did=edge284&disp=3360
http://www.openrce.org/articles/full_view/25

RRTEAM EZINE ISSUE (I
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

9 CRACKING FOR FUN BY ARJUNS

| am going to discuss upon how cracking can be a fun. The topic I've chosen is how one can create multiple

AiTeam

instances of Yahoo Messenger and Windows Live Messenger as we know one can’t create multiple instances of
them by default.

9.1 SOME THEORIES

Let’s discuss upon how program knows if there is already a running instance of it. There may be various tricks
to check it but the following Win32 AIPs are very helpful to achieve the same goal.

9.1.1 FINDING WINDOW
1. FindWindow (Exported by user32.dll)

The FindWindow function retrieves the handle to the top-level window whose class name and window name
match the specified strings. This function does not search child windows.

HWND FindWindow (
LPCTSTR lpClassName, // pointer to class name
LPCTSTR lpWindowName // pointer to window name

);

9.1.2 MUTEXES:
2. CreateMutex / OpenMutex (Exported by kernel32.dll):

A mutex (from mutually exclusive) is an object that can only be acquired by one thread at any given moment.
Any threads that attempt to acquire a mutex while it is already owned by another thread will enter a wait state
until the original thread releases the mutex or until it terminates. If more than one thread is waiting, they will
each receive ownership of the mutex in the original order in which they requested it.

Cracking for Fun by arjuns

RRTEAM EZINE ISSUE (I
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

9.1.3 SEMAPHORES
3. CreateSemaphore/ OpenSemaphore (Exported by kernel32.dll)

A semaphore is like a mutex with a user-defined counter that defines how many simultaneous owners are
allowed on it. Once that maximum number is exceeded, a thread that requests ownership of the semaphore
will enter a wait state until one of the threads release the semaphore.

9.1.4 EVENTS
4. CreateEvent / OpenEvent (Exported by kernel32.dll)

The event object is a kernel object that stays nonsignaled until a condition is met. The programmer has the
control over setting the event object to a signaled or a nonsignaled state, unlike a mutex or semaphore where
the operating system governs the signaled and nonsignaled state of the object.

Notes:

All of the synchronization objects described above are managed by the kernel’s object manager and
implemented in kernel mode, which means that the system must switch into the kernel for any operation that
needs to be performed on them.

9.2 DIVING INTO THE SCENE

9.2.1 YAHOO MESSENGER
Let’s begin our real job, first we go for Yahoo Messenger, version I’'m using is 8.1.0.249
Open the target in Olly.

You can try putting breaking point on every APls mentioned above. The only important Breakpoint is of at
4a2948B.

PUSI Title
. 0685 D4FEFFFF| MOU BVTE PTR SS:(EBF-I?C]. R
5 68 DCC&7RBE PUSH YahooMes . BE7ACED Clazs = "YahooBuddyMain™
v 7F HORT Yaho oMes.BB
A FFIS B40C796a anL DNOR PTR DS‘[(&USERSZ FindWindowR|LF indllindowA

3BCe CHMP E
. 8985 ESFEFFFF|MOU DuOhD,PIR:SS!CEBB*&!SJ.ERX
75 38 JMZ SHORT YahooMes.BB84R2993

As you can clearly see that there is a comparison being made at 4A2951, where ESI holds 0 and EAX being
window handle. This is just to check that if there is already a window running of the same class
“YahooBuddyMain”. And if true it closes the newer instance by closing window handle at 4A297E.

Cracking for Fun by arjuns m

ARTEAM EZINE ISSUE 1Y
ARTEAM EZINE ISSUE 11l REV.1

Bigam

I Reversing : I'm just'doing my hobby]

So we just need to patch JNZ 4A2993 at 4A2959 to NOP so that it never jumps off there.

Now,
4A295B|| . 68 24D97ABB | PUSH YahooMes.BB7AD994 Semaphorelane = "messengered ist_sem”
aadpzocal) . &R 81 PUSH 1 Max imumCount = 1
3¢ S& PUSH ESI InitialCount
S6 PUSH ESI pSecurity
gség 48027961 CALL DWORD PTR DS: [<&KERNEL32.CreateSem LCreateSemaphoref

gSFS TEST ESI,ESI

4 1B 2938

FF15_ASD379@1 CALL DWORD PTR DS: [<&KERMNEL3Z.GetLastErCGetLastError

. 3D B7@0008@ | CMP ERX, 9BV

.~ 75 BE JMZ SHORT YahooMes.B@B4R293E

. 56 PUSH ESI hObject
FF1S 18037981 CALL _DWORD _PTR DS: [<&KERMNEL3Z.CloseHand|LCloseHandle

[
=
[}
<

w
m
o
—
D

S

At 4A2964 we have a call to CreateSemaphoreA, and after execution it returns not null, if there is already
Yahoo Messenger running and null if no instance of it running in EAX , in case of not null we assume that
there is already Semaphore object exists of the name “messengerexists_sem”. Further we have a call to
GetlastError at 4A2970 and a comparison is being made with the Ilast error code to B7
(ERROR_ALREADY_EXISTS), if comparison is true newer window never gets executed.

So patch 4a297b: JNZ 4a298b too jmp 4a298b

Copy all modification and save, you are done. Enjoy as many instances as you want of yahooMessenger

9.2.2 WINDOWS LIVE MESSENGER 8.1

Easy, Windows Live Messenger doesn’t use FindWindow method to check if there is already one instance of it
running nor it checks for Semaphore object but it uses an event object to know if there is one running already.

> 68 728D75508 |PUSH msnmsar.@B@550778 EventMame = "MSNMSGR"™
« 57 PUSH EDI Initiall anales
. 6A 81 PUSH 1 ManualRe = TRUE

Security

. 57 PUSH EDI pSecu Y
. FF1S 3C144061 CALL DWORD PTR DS:[<&KERNEL3Z.CreateEveillreateEventh

We can clearly see that one Event object named “MSNMSGR” is being created at 543cd4

When there is already one, we’ll have not null value in EAX which is of course an event handle to an earlier
event object.

Cracking for Fun by arjuns m

ARTEAM EZINE ISSUE 1Y
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

Further we have

BES43CEE| . 3D BYB00008 | CMP ERX, 9E7
BE543CF3| v BF84 2ZF4B0081 JE msnmsgr.99548828

- e e a e ey

@BB543CEE| . FF15 2C15406i CALL DWORD PTR DS: E(&KERNELBZ.GetLaBtErI CGetLastError

Call at 543ce8 gets last error and if that error code is B7 (ERROR_ALREADY_EXISTS)

Newer instance gets destroyed. We just need to patch JE 548828 to nop so it never jumps off to destroy the
newer instance...

Save all modification, now you have a working multi messenger. ©

Cracking for Fun by arjuns

RRTEAM EZINE ISSUE (I}
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AiTeam
10 WRITING A SELF-KEVGENERATOR LOADER WITH ABEL BY MISCHI3F |

10.1 INTRODUCTION

10 WRITING A SELF-KEYGENERATOR LOADER WITH ABEL BY M1SCH13F

Self keygenning is a method of patching an app, or in our case using a loader, to give the user a valid serial.
This is a simplified way to keygen something. It can be used on very difficult to follow registration schemes or
for anyone who just finds keygenning to be difficult. While this method might not be as 1337 as keygenning an
app it has its place. Some assembly is required ;-). As always the more ASM you know, the better. The Program
we will be examining today is, MP3 AVI MPEG WMV RM to Audio CD Burner, by Ether... Could they have made
the name a little longer? Although | would not consider this a difficult program to serial fish, or to self keygen,
it is not intended for n00bs either. This tutorial is also not intended to supplement lenal51’s tutorials, which |
consider to be the definitive guide to cracking; hopefully this will complement and reinforce what she had in
her tuts. If you haven’t seen them | highly recommend doing so. They can be found at http://tuts4you.com. On
a final note, this is my first tutorial. | hope you enjoy. Enough BS let’s get down to business... Happy Cracking.

Tools Needed:

e PEID, http://peid.has.it/
e OllyDbg, http://www.ollydbg.de/
e ABEL, http://www.tutsdyou.com/download.php?view.385

Not Required, but recommended tools:

e MASM, http://www.masm32.com/masmdl|.htm
e WIinASM, http://www.winasm.net/index.php?ind=downloads

Further Reading:

e Lenal51 Tutorials:
v' 17. Insights and practice in basic (self)keygenning
v' 24, Patching at runtime using loaders

e Goppit’s Win32 Assembler Coding for Crackers

Writing a self-keygenerator loader with Abel by M1sCh13F

http://tuts4you.com/
http://peid.has.it/
http://www.ollydbg.de/
http://www.tuts4you.com/download.php?view.385
http://www.masm32.com/masmdl.htm
http://www.winasm.net/index.php?ind=downloads

ARTEAM EZINE ISSUE 1Y
ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

10.2 EXAMINING THE APPLICATION

As with any other potential target we will start by looking at our exe in PEiD. BTW Thanks to SnD For the nice
visual on the version | am using :)

Hreoss =3 <
File: [C:\Program Files\MP3 AV MPEG WMV RM to Audio CD Burr
Entrypoint: |000118DA EPSection: | text > |
File Offset: [000118DA First Bytes: |55,8B,EC,6A |
Linker Info: (6.0 Subsystem: [Win32GUI I

[Microsoft Visual C++ 6.0

Multi Scan Task Viewer | Extra Info | =>

[V stay ontop Options I About | Exit

Alright... Visual C++ 6. Usually easy to follow. Further examination, using kanal, reveals no known crypto
algorithms used.

After loading the program in Olly we will land at EP press F9 to start and open the registration window. Type in
your name as well as a bogus serial number. Here is what you will see :(. Don’t worry about the Invalid user
name though... we'll fix that ;)

o] B
ﬂm_"l_l_J it
1.Connectio the internet in your normal method.

2.Buy a registration code. Buy Now ! =
3 Enter User Name: | m1sch13f |

4.Enter Registration Code: [333333333] *
5.Press OK to register. 4

OK | cancel |

€D Recorder: [0 DvDRWRWEIZS 127 ©)| Discsze [550M74Min O

Use space 0.0% [I 2]

Writing a self-keygenerator loader with Abel by M1sCh13F

RRTEAM EZINE ISSUE (I}

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AiTeam

10.2.1 SERIAL FISHING THE TARGET

Alright, so right click the main window and go to “Search for” and then “All referenced Text Strings” As I'm
sure you already know by now, unless you are a total n00b. Hit the ‘home’ key on your keyboard to start at the
top of the list, Right click and search for “invalid user” or something like that. Make sure it’s not case sensitive
either in case you DeCidEd tO tYpe LikE Thls.

We find the text string at address 004066DC. Look around and examine the code a bit and study what is going
on and how we will land there. You'll see that there is a JNZ that jumps past a return into the function to call
the bad boy. Let’s not get ahead of ourselves, BP the beginning of the registration scheme 00406570.

« ©SlEC Coozowos| SUB ESP,clu
53 PUSH
56 PUSH ESI
68 01 PUSH 1
MOU EBX,ECX
ES 71AF008A [CALL <JIP.&HMFC42. 86334>
9843 HOU EAX, DUORD PTR DS: [EBX+64]
805424 83 |LEA EDX,DWORD : (ESP+8]
2800 SUB EDX, EAX
5 gaes HOU CL,BVTE PTR DS: [EAX
MOU BYTE PTR DS:[EDX+EAX],CL
) EAX
. 84C9 TEST CL,CL
A 75 F6 JNZ SHORT MP3_AUI_.PA40658A

Step, F8, through the code. We don’t see anything too interesting beginning to happen until 004065CD. This is
where the serial is calculated. So, if you are more interested in patching, or keygenning this may be of interest,
but today we will continue on. Step, F8, once more and we see our valid serial on the stack, below our name.
Follow it in the dump so we can see what we might be playing with later. Scroll around a little bit and you'll see
your name and your bogus serial not far away. Take notice that the correct serial is 1 Q-Word Long, or 2 D-
Words long. No matter how long your name is on this app the serial is always the same length.

sssssss sss®uas

-
-

ASCII

31 3 1 20 00 00 08|80 0g 21 mlschl3f......pH
19 17 90|20 40 FS 77|00 00 00 00|00 00 00 00| 34%. Clw....uu..
90 00 00|00 00 00 90|FC AB 13 88|91 7S F1 77|........ %0, 2usy
00 00 00|10 81 00 90|88 4R 16 00|02 00 00 00|....00..0J..8...
38 38 38|38 38 00 77|20 40 FS 77|00 00 00 00 W Bw....
00 90 00|10 6B F1 77|00 00 00 00|18 AC 12 80|#k2w....th!,
6B F1 77|27 21 81 58|68 4A 16 00|02 00 00 00|Sk:w’10:0J..8...
AC 13 00|01 00 00 80|4C AC 13 08|18 E? 41 7E|<%!.08...L%!.18R"
41 45 39|38 36 41 34|00 41 45 45|37 46 46 37| CAE986R4.RAEE?FF?
2D 39 35|42 41 43 45|41 30 2D 32|33 30 32 32| C-9SCACERB-23022
33 32 20|44 46 39 46|38 42 24 31|20 43 42 31|432-DF9FS8B41-CB1
35 37 34|43 20 39 35|38 33 39 45/39 36 20 36| CS74C-95839E96-6
32 41 45|39 42 35 00|ES AC 13 00|00 00 00 00| S2AE9BS. $%!.....
90 00 00|94 00 00 OO)ES AC 13 00|20 00 00 00| b...e... 3%, ...
90 00 90|BS AC 13 008)39 E8 41 7E(27 31 81 S8| ...3%M.93R"" 16X
00 00 00|84 00 00 00| AS AC 13 00|00 00 00 60| (...e...4%0.....
90 91 7C|90 4R 16 88|74 AD 13 08(21 80 91 7C|y.2i.Ja.till. t. 2!
86 1S 08|30 08 91 7C| 62 00 00 00|02 00 00 00| $48.=.2:16...06...
90 00 00|00 00 00 00|64 AD 13 BB|CE E? 41 7E|........dé!.5F7R”
31 91 S8|00 00 00 00|05 00 00 00|02 00 00 00| "16X....$...0...
00 00 00|00 00 0O 00|20 00 00 00|04 00 00 80

00 00 00|12 00 00 00|28 00 00 00|01 00 00 00

00 00 00|oF 00 00 o0 00 00 08|11 00 68 00

08 08 28 08 08 00 00 00 00|00 00 08 08

o

sessPocncnnnnnne
s 1

If you look a little bit further in the code, you’ll see that if you input a correct serial, it is written to a file,
option.ini, so if we can replace our bogus serial with the correct one in the dump we should have a fully
functioning program that wasn’t patched right?

Writing a self-keygenerator loader with Abel by M1sCh13F

ARTEAMIEZINE ISSUE IN

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AiTeam

10.2.2 FINDING WHERE TO PATCH

Alright... now that we have our correct serial, let’s see what happens when registering. Copy and paste the
correct serial into the registration box. Step, F8, note the values of the registers particularly EAX when you get
to the jump to bad boy. Continue past the jump to the bad boy and we will see that there are two loops
following it. The first one reads your name from the dump, the second reads the serial. This is where the
program figures out what data goes into the configuration file.

.~ BF8S DFBBo0os| Jiic MP3_RVI_. 00486605

> B8R4CH4 08 MOV CL,BYTE PTR S$S: [ESP+EAX+81]
. | 8888 7@AD410@|MOU EVTE PTR DS: CEAX+41AD7@3,CL
. | 40 INC ERX

. | 84C9 TEST CL,CL

A5 F1 JNZ SHORT MP3_RVI_.004065F6

. 33Ce XOR ERX, EAX

> ©SR4Ca4 48 MOU CL,BVTE PTR SS:[ESP+EAX+48]
. 408888 70AC4100 WIN: EYTE PTR DS:[ERX+41RC70],CL
. 84C9 TEST CL,CL

A 75 F1 JNZ SHORT MP3_RVI_.00406607

The Code after this is pretty much useless to us. Now let’s figure out where to patch the program. The ideal
spot would to follow the jump to the bad boy since that code is useless for us anyhow and we don’t want to
dig too deep :)

US| 2 70H 44 PUSH
.

a2 607 68 BCAS4100 | PUSH MP3_AUI_.0B@41ASAC ASCII "Sorry” 5 1
a 60C 68 E4R44100 |PUSH MP3_RUI_.0041R4E4 ASCII "Invalid user name or registeration code"”
2 6E1| . 8BCB MOV ECX,
1B4066E3| . C70S R4AE4100| MOV DWORD PTR DS:([41RER41, 2
D| . ES 34RD0000 |CALL <JMP.&MFC42.24224>
2 POP ESI
6F3| . SB POP EBX
F4| . 81C4 Co020000|ADD ESP, 2Ca

As you can see we have 25(HEX) bytes to play with here, which should suffice for what we need to do.

You may be asking yourself why we don’t patch it at the source, where the serial is originally written onto the
dump. Well further examination reveals that it seems to be happening in a system DLL, msvcrt. And to be
honest with you | don’t feel like messing around in there. In other programs it may be a very viable option
though, so don’t limit yourself to the method we are using today.

10.2.3 PATCHING THE APP

Now comes the fun part, patching the app to do our bidding >:)

We have to think of what exactly we want to do.
1. Move DWORD at memory address 0013AC20 to DWORD 0013ABEO
2. Move DWORD at memory address 0012AC24 to DWORD 0013ABE4

3. YouU’'ll notice the bogus serial has an empty byte after it. Make sure to patch the byte at 0013ABES to
be empty otherwise you'll end up with funky data in the configuration file unless the user put an 8

character long serial.

Writing a self-keygenerator loader with Abel by M1sCh13F

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

4. Clear EAX to be Zero just like it was when passing the jump to the bad boy when registration was
successful. This is important because the loops after the jump to the bad boy use EAX as a counter.

5. Jump back to where we would be right after the jump to the bad boy, 004065F6.

You cannot just assemble code that says MOV DWORD PTR DS:[69696969], DWORD PTR DS:[00311311].
You will have to move the d word’s contents to a register. Since we already are going to XOR EAX | am going to
move use that.

Here is what the patch will look like in olly

Al 20HC1308 | MOV ERX,DWORD PTR DS:([13RCz261]
A3 EGAB1308 | MOV DWORD PTR DS:[13ABEA],E
Al 24AC1368 | MOV ERX, DUORD PTR DS: C13RC24]
A3 E4AE1300 |MOU DWORD PTR '[1398E4J EAX
C605 ESAB1368| MOV BYTE PTR DS: [13ABES], B
33Ca XOR EAX, EAX

~ E9 FFFEFFFF #gg MP3_AVI_.004865F6

MOV EAX,DWORD PTR DS:[0013AC20]
MOV DWORD PTR DS:[0013ABEO],EAX
MOV EAX,DWORD PTR DS:[0013AC24]
MOV DWORD PTR DS:[0013ABE4],EAX
MOV BYTE PTR DS:[0013ABE8],00
XOR EAX, EAX

JMP 004065F6

Which correspond to this byte sequence:

Al 20 AC 13 00 A3 EO AB 13 00 Al 24 AC 13 00 A3 E4 AB 13 00 C6 05 E8 AB 13 00 00 33
CO E9 FF FE FF FF 90 90 90

If you don’t know how to find that right click the code and “follow in dump”

Hopefully you are following along so far.

10.2.4 TESTING

At this point it is, as always, advisable to test your patch. Right Click, Copy to executable, all modifications.
Would also be a good idea to save your work thus far. Let’s keep our breakpoints intact and step through the
code to make sure it is doing exactly what we want it to. Unless you screwed it up you should see the contents
of 0013AC20 move to EAX and then to 0012ABEO and so on.

Writing a self-keygenerator loader with Abel by M1sCh13F

ARTEAMIEZINE ISSUE IN

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

2
-
w
.
.
-
-
!

........‘&!.lu!u

C-9SCACERB-23022
432-DF9F8B41-CB1
C574C-95839E96-6
S2AE9BS. #%all.

Pecob.. 2NN, ...

...'I’i! 950”)3&1

SRR S e

S8 8ESRITIIBREBEBES 2338

FeE888sRBRBERHE2VeESIBE
RSS2 8ASBINBAELIBER28S
PSS E888 2 8L RBBLESRIE88 AN
PS8 83888S88RAGRSRILISIR
RSB RRR B ERRR8 2850883388
PR R ot Pt R Pt
880 0e S EneRBhn NS ANDSS
eS8 888N S 8 ARS8 SIS SSE
SEERRARRSBESEBEYERLSN 28
S8 83T S8 8IBRE8ETSBIHIR
PSP e T P

) -
Do

ES88888888888888888888888

Here’s what the dump should look like after our patch has run its course.

Also notice what happens on lines 004066B9 and 004066B4 as we pass through the loops after the jump to the
bad boy.

98496690 S1 PUSH ECX F i leName
204

B669B| . 68 70RD4100 PUSH MP3_RVI_.0841R079 String = "mischi3f”
6A8| . 68 904190 PUSH MP3_AVI_.98419C0D4 Key = "User name”

284066AS| . PUSH MP3_RVI_.088419CCS Section = "Register”

B66AA| . FFD6 CALL ESI WritePrivateProf i leStringRA
204066AC| . 809424 CS80000| LEA EDX nuonn PTR $S:[ESP+C8]
204066B3| . S2 PUSH El FileName
204066B4| . 68 7OAC41880 |PUSH nps RUI .B841RC70 String = "CAE986A4"
00406683 . 68 B49C4100 |PUSH MP3_AVI_.00419CB4 Key = "Reglstrat ion code”

B66BE| . 68 C89C41908 |PUSH MP3_| FIUI .B8419CC8 Section = "Register”
A04066C3| . FFD6 CALL ESI WritePrivateProfileStringR

Name and correct serial :)

Job well done. Now all that is left to do is make it distributable. We have several ways of doing this. We can
make an offset patch, make a search and replace patch, which could possibly work on other versions, or we
can make a loader that the user will only have to run once and they don’t have ‘cracked’ software on their
machine. | like the third method myself, it's 1337er which is always a plus... right? So let’s move on.

10.3 CREATING A LOADER IN ABEL

Alright this is the easy way at going about making a loader. In case you have never made a loader, don’t worry
I'll be showing you. Let’s fire up ABEL. First thing let’s change the timeout, which is the time the loader waits
for the program to load before patching. Sometimes when you can’t find a suitable memory address to follow
to make a loader in dUP this is the best alternative.

| changed the timeout to 5 seconds because 15 is far longer than we would require. | also disable Auto
learning. Auto learning searches for byte sequences, this works well in polymorphic code or a packed
executable where the address of the patch might change.

Writing a self-keygenerator loader with Abel by M1sCh13F

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

Next | put the target program’s file name. I just right clicked the target file and pressed rename and copied the
name and added .exe at the end when | pasted it into ABEL. The Loader name is your call. Next comes the
tricky part. The patch data in ABEL can be kind of annoying because you can’t just copy and paste an entire
byte sequence like you can in dUP. Despite its downfall it is pretty straight forward and easy.

First you put the address where you want to patch. You don’t need to use raw offset, just type what you see in
Olly, as you can see in my screenshot. For the “apply this patch” section you can pick any of the options they
will all work for our example. For the final touch | added the custom icon by loading the icon used by the
program we are patching. That is up to you though as well.

Alright well enough around lets generate this loader. Press OK out of the patch data window and then press
generate!

“ "ABEL* loader generator v2.31 by cOrdat “ind. [|l®[=R]
File
Detection method . . : ; ;
© Standerd Search for window caption/class name (and what to do later} Tieout seck [| Patchdeaplsect [0
©) Window caption { ||| Refresh |
O wi e [} Autoleaming enabled | Show splash screen
[7] Priority boost [Ignore memory faults
. (S) T arget program filename: ["] Enable debug mode
0se icon: = ;
(1 of 11) E = IMP3 AYI MPEG WMY RM to Audio CD Bumer.exe I [~] First child process found is the main process
Generated loader/installer filename:
[Restore Owl| | Loadicon | | [P3AVIMPEG WMV RM to Audio CD Bumer Loader.exe | | [Include simple installr
["] Do file cleaning ["] Do registry cleaning ["] Include DateF aker module
Info caption: ILoader created by: I Author name: IM] sCh13F I Author mail/www: |]
| Setabove info as defauit |
Patch data (aptivakaus Chll_Chll_ z

(7 T)

Wt Bl=i
Apply this patch: 124 AC13,0043E4 48 [

Patch address: | 00406605 () While target process is still suspended after loading

() After resuming, but before waiting for specified window

Patch search range: (©) After loading, resuming and waiting for specified window

Patch data (active keys: Ctrll, Ctl-L, Ctl-C, Ctil-X, Ctel¥, Del):
m‘ﬂ] 68 OC A5 41 00 68 E4 A4 41 00 8B CB C7 05 A4 AE 41 00 00 00 0O
Al 20 AC 13 00 A3 EOD AB 13 00 A1 24 AC 13 00 A3 E4 AB 13 00 C6 05 ES

< \:\ >

About leant Entered patch data length: Cancel] £ Ok |

wlo|lw|lo|jlo|s|lw|n| =

E 1

Writing a self-keygenerator loader with Abel by M1sCh13F

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

10.3.1 TESTING LOADER

Let’s first delete the data from “option.ini” that contains our user name and registration code. So you should

be looking at something like this...

| option - Notepad Ve e
File Edit Format View Help

[Register]

User name=

Registration code=
[Destinate]

Temporary folder=C:\wav file\
Disc size=0

Delete tmp files=1

Alright now it’s time to test our loader! Click ‘Register’ and let’s try it out.

A) This copy is licensed to:m1sch13f YOur copy .
R
a ormal method.

Buy Now ! e

3 Enter User Name: | m1sch13r |
4.Enter Registration Code: l 88088888888 | L
5.Press OKto register. 4

OK | cancel |

CD Recorder: lK: [1:1.0) DVD+RW RW5125 1.27 @] Disc size: 650M/74Min)

Use space 0.0% [1 » |]

Alright, now let’s take a look at option.ini again and make sure our patch did what it was supposed to.

Writing a self-keygenerator loader with Abel by M1sCh13F

ARTEAM EZINE ISSUE 1Y

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

| option - Notepad ¥ S = ol
File Edit Format View Help

[[Register]

User name=mlischi3f
Registration code=CAE986A4
[Destinate]l

Temporary folder=C:\wav file\
Disc size=

Delete tmp files=1

As you can see, we have our name and our correct 8 character long serial.

If you want to double check, restart the program without the loader and look in the about box.

| Aoout MPIIAVIMPEGIWMVIRM to Audio CD Burner ‘ LX)

S MP3IAVIMPEGIMVIRM to Audio CD Burner 9k

Home page
Online order
Technical support
This copy is licensed to:m1sch13f
Copyright (C) 2001-2005 Ether Software All rights reserved

Warning:this computer program is protected by copyring law and
international treaties,Unauthorized reproduction or distribution of
this program,or any portion of it may result in severe civil and
criminal penalties,and will be prosecuted to the maximum extent
possible under the law.

Writing a self-keygenerator loader with Abel by M1sCh13F

RRTEAM EZINE ISSUE (I}

ARTEAM EZINE ISSUE 11l REV.1

I Reversing : I'm just'doing my hobby]

AiTeam

ARTEAM EZINE #4 CALL FOR PAPERS

ARTeam members are asking for your article submissions on subjects
related to Reverse-Engineering.

We wanted to provide the community with somewhere to distribute
interesting, sometimes random, reversing information. Not everyone likes
to write tutorials, and not everyone feels that the information they have is
enough to constitute a publication of any sort. I’'m sure all of us have hit
upon something interesting while coding/reversing and have wanted to
share it but didn’t know exactly how. Or if you have cracked some
interesting protection but didn’t feel like writing a whole step by step
tutorial, you can share the basic steps and theory here. If you have an idea
for an article, or just something fascinating you want to share, let us know.

Examples of articles are a new way to detect a debugger, or a new way to defeat debugger detection, or how

to defeat an interesting crackme..

The eZine is more about sharing knowledge, as opposed to teaching. So the articles can be more generic in

nature. You don’t have to walk a user through step by step. Instead you can share information from simple

theory all the way to “sources included”

What we are looking for in an article submission:

HwnNe

g

7.
8.

Clear thought out article. We are asking you to take pride in what you submit.

It doesn’t have to be very long. A few paragraphs is fine, but it needs to make sense.

Any format is fine, but to save our time possibly send them in WinWord Office or text format.

If you include pictures please center them in the article. If possible please add a number and label
below each image.

If you use references please add them as footnotes where used.

If you include code snippets inside a document other than .txt please use a monospace font to allow
for better formatting and possibly use a syntax colorizer

Anonymous articles are fine. But you must have written it. No plagiarism!

Any other questions you may have feel free to ask

We are accepting articles from anyone wanting to contribute. That means you.

We want to make the eZine more of a community project than a team release. If your article is not used, it’s

not because we don’t like it. It may just need some work. We will work with you to help develop your article if

it needs it.

Questions or Comments please visit http://forum.accessroot.com

ARTeam eZine #4 Call for Papers m

http://forum.accessroot.com/

	Forewords
	Disclaimer
	Supplements
	Verification

	Code Injection – 1ClickDVDCopyPro by CondZero
	Introduction
	Abstract
	Target
	Preparation
	Checking out the target
	Analyzing the target
	Injecting our code
	Conclusions

	MUP AnyDVD v6.1.3.6 by CondZero
	Introduction
	MUP AnyDVD v6.1.3.6
	Target
	Setup
	Checking out the target and finding the OEP
	Dumping the target
	Fixing the IAT
	Analyzing & Patching the target
	Time Limitation - Expiration
	Nag Screen
	General Settings & Registration Information
	Registered Name option (cont’d):
	HD DVD & BLU-RAY Settings
	HD DVD & BLU-RAY Functionality
	Gotcha’s

	Conclusions

	Patching Prima eGuides (single byte patching) by SSlEvIN
	Introduction
	Patching Prima eGuides
	Target
	Tools

	Inspecting the target
	Finding patch(es)
	Piece of cake
	Aesthetic patch

	Conclusions

	ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath
	Introduction
	Approaching the enemy
	Reversing the registration schema
	Studying the jump 1
	Studying the Jump 2
	Handling of function sub_456BAE where serials version are checked

	Testing whole thing & Conclusions

	Reversing Business Translator 9.00 by kaira
	Introduction
	Approaching the Enemy
	Body
	Searching For A Serial

	Conclusion

	ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are doing by Haggar
	Introduction
	Content
	[1] Requirements for this guide
	[2] Preparations before loading target in Olly
	[3] Loading target in Olly
	[4] Using script to kill anti-debug tricks
	[5] Finding OEP
	[6] Using script to decrypt imports
	[7] Dumping to hard disc
	[9] Reference material
	ScriptS

	OCR Tools Walkthrough of Key Check routine by Anhs!rk
	Introduction
	Tool Required
	Walkthrough

	The strange case of DBG_PRINTEXCEPTION_C & DBG_RIPEXCEPTION by MOID
	Introduction
	Trick description
	The cause
	The solution
	References

	Cracking for Fun by arjuns
	Some Theories
	Finding Window
	Mutexes:
	Semaphores
	Events

	Diving into the scene
	Yahoo Messenger
	Windows Live Messenger 8.1

	Writing a self-keygenerator loader with Abel by M1sCh13F
	Introduction
	Examining the Application
	Serial Fishing The Target
	Finding Where To Patch
	Patching The App
	Testing

	Creating A Loader In ABEL
	Testing Loader

	ARTeam eZine #4 Call for Papers

