

2008

Editor: Shub-Nigurrath

ARTeam

4/15/2008

ARTeam eZine Issue III rev.1

ARTEAM EZINE ISSUE III REV.1

Forewords 2

ARTEAM EZINE ISSUE III REV.1

Forewords 3

TABLE OF CONTENTS

FOREWORDS 5

Disclaimer 6

Supplements 6

Verification 6

1 CODE INJECTION – 1CLICKDVDCOPYPRO BY CONDZERO 7

1.1 Introduction 7

1.2 Abstract 7

2 MUP ANYDVD V6.1.3.6 BY CONDZERO 13

2.1 Introduction 13

2.2 MUP AnyDVD v6.1.3.6 13

3 PATCHING PRIMA EGUIDES (SINGLE BYTE PATCHING) BY SSLEVIN 24

3.1 Introduction 24

3.2 Patching Prima eGuides 24

3.3 Inspecting the target 24

3.4 Finding patch(es) 26

3.5 Conclusions 28

4 EXAMDIFF 4.XXX REVERSING THE PROTECTION SCHEMA BY SHUB-NIGURRATH 29

4.1 Introduction 29

4.2 Approaching the enemy 29

4.3 Reversing the registration schema 30

4.4 Testing whole thing & Conclusions 36

5 REVERSING BUSINESS TRANSLATOR 9.00 BY KAIRA 37

5.1 Introduction 37

5.2 Approaching the Enemy 38

5.3 Conclusion 43

6 EXECRYPTOR FOR DUMMIES OR HOW TO UNPACK EXECRYPTOR 2.4 WITHOUT

HAVING A CLUE WHAT YOU ARE DOING BY HAGGAR 44

6.1 Introduction 44

6.2 Content 44

6.3 [1] Requirements for this guide 44

6.4 [2] Preparations before loading target in Olly 45

ARTEAM EZINE ISSUE III REV.1

Forewords 4

6.5 [3] Loading target in Olly 46

6.6 [4] Using script to kill anti-debug tricks 46

6.7 [5] Finding OEP 47

6.8 [6] Using script to decrypt imports 50

6.9 [7] Dumping to hard disc 50

6.10 [9] Reference material 51

6.11 ScriptS 51

7 OCR TOOLS WALKTHROUGH OF KEY CHECK ROUTINE BY ANHS!RK 52

7.1 Introduction 52

7.2 Tool Required 52

7.3 Walkthrough 52

8 THE STRANGE CASE OF DBG_PRINTEXCEPTION_C & DBG_RIPEXCEPTION BY MOID 62

8.1 Introduction 62

8.2 Trick description 62

8.3 The cause 63

8.4 The solution 64

8.5 References 66

9 CRACKING FOR FUN BY ARJUNS 67

9.1 Some Theories 67

9.2 Diving into the scene 68

10 WRITING A SELF-KEYGENERATOR LOADER WITH ABEL BY M1SCH13F 71

10.1 Introduction 71

10.2 Examining the Application 72

10.3 Creating A Loader In ABEL 76

ARTEAM EZINE #4 CALL FOR PAPERS 80

ARTEAM EZINE ISSUE III REV.1

Forewords 5

FOREWORDS

 Hi all finally we had time to complete the long

awaited issue III of our eZine. It has been a long wait

we know, but real life things kept me busy and far

from editing this eZine. It’s not an easy thing to

collect, select and assembles all the contributions.

Nevertheless I hope this issue will be at the same

quality level of past issues.

As you can see there’s a new look, thanks also to some graphics done by Gunther, which resembles more

professional and clear.

This is a special issue, because most of its papers are tied to specific programs. I always try not to tie tutorials

to specific targets, because the tutorial otherwise follows the destiny of the program, becoming rapidly

obsolete or being too much specific, and also because is less “legal”. Each time I do a tutorial the first thing I

ask myself is which is the added value I am going to share with readers or, better, will I be Original?

 I obviously can only speak for myself: to answer this question I often start from the reasons that bring me to

reversing that specific program. It’s not just for doing another crack or to release a program before others,

because we are out of these businesses (which btw free us from the 0days logics and races). For my own

purposes it’s always easier to ask for a specific target or just access to 0day repositories: I always can find the

programs I need. Then the reason lies behind some program’s characteristics, some lessons I learnt that I want

to share with someone, either developers or crackers.

This Issue has a lot of target specific tutorials which are often tied to program which have already been

updated meanwhile; on the one hand this is a good thing because frees you from the urgency of reading the

tutorial just as a longer way to have a crack, on the other hand you cannot directly test the steps, because the

target isn’t anymore available (but you can ask us). Anyway what I think is good is that you are free to

understand the method and the underlying logic most reading the only thing you have, the tutorial.

The targets we used are then just an excuse to do something interesting by the reversers’ point of view. The

lessons learnt are underlined, but are not limited to what you are reading. Depending if you are a developer or

a cracker you might draw your conclusions about how effective are some common behaviour when

programming protections.

Anyway what you will do with this document is totally up to you; just remember that, within the trial period,

you can do what you want with the programs, after trial expires you should consider removing or buying..

Your Favourite Neighbourhood Shubby

Editor's Note: Reason for this rev.1 is that previously I forgot to insert two contributions from MOID
and M1SCH13F. Now they are restored..

ARTEAM EZINE ISSUE III REV.1

Forewords 6

DISCLAIMER

All code included with this tutorial is free to use and modify; we only ask that you mention where you found it.

This eZine is also free to distribute in its current unaltered form, with all the included supplements.

 All the commercial programs used within the different papers have been used only for the purpose of

demonstrating the theories and methods described. No distribution of patched applications has been done

under any media or host. The applications used were most of the times already been patched by other

fellows, and cracked versions were available since a lot of time. ARTeam or the authors of the papers

shouldn’t be considered responsible for damages to the companies holding rights on those programs. The

scope of this eZine as well as any other ARTeam tutorial is of sharing knowledge and teaching how to patch

applications, how to bypass protections and generally speaking how to improve the RCE art. We are not

releasing any cracked application.

SUPPLEMENTS

This eZine is distributed with Supplements for each paper; the supplements are stored in folders with the same

title of the paper. Almost all the papers have supplements, check it.

VERIFICATION

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all files have been released by ARTeam and

are unaltered. The ARTeamESFVChecker can be obtained in the release section of the ARTeam site:

http://releases.accessroot.com

http://releases.accessroot.com/

ARTEAM EZINE ISSUE III REV.1

Code Injection – 1ClickDVDCopyPro by CondZero 7

1 CODE INJECTION – 1CLICKDVDCOPYPRO BY CONDZERO

1.1 INTRODUCTION

1 Click DVD Copy Technology Software Reviews 2007 reviewed the Top 10 DVD Copy Software Products that

produce copies of DVD movies employing "1Click" technology and processing of DVD movie duplication and

awarded 1Click DVD Copy Pro version 2.4.1.8 as clearly the more superior product. After our evaluation, we

feel at the present time that it sets the standard for all DVD copy software applications. After careful

examination one will discover that this is because it's feature set and proprietary CPRX technology that makes

it possible to copy virtually any DVD in circulation. Something the other DVD movie copy software applications

cannot confidently claim. With 1Click DVD Copy Pro, the user has more control over the finished DVD movie

product.

In the ARTEAM EZine #2, I showed you how to inject code to mark the sister product application

1ClickDVDCopy 5 as registered. In this short tutorial, I will demonstrate the same principle for marking the pro

version as registered. Note: This application is protected by AcProtect / UltraProtect. Don’t bother with the

AcStripper program on this application. It won’t help you. This article demonstrates why a reverser sometimes

needs to dig into their bag of tools and find another more convenient way to patch an application. Also note

that this application has one annoying feature (see below):

Figure 1

1Click DVD Copy - Pro requires that you have your display resolution set to the default (Normal 96 DPI)

setting. Weird, but I guess the developer’s had no time for a more robust solution. So let’s reset our resolution

(if necessary) and move on, shall we.

1.2 ABSTRACT

This Tutorial will introduce you to a method necessary in injecting code into an application so that you can

further analyze the application beyond its trial limits. I show you one of the easiest methods in which to

accomplish this. Remember, timing is key when dealing with packed / protected targets that employ code

encryption and obfuscation.

http://www.1clickdvd-copy.com/review_1clickdvdcopy-pro.htm
http://www.1clickdvd-copy.com/cprx.html
http://www.1clickdvd-copy.com/review_1clickdvdcopy-pro.htm

ARTEAM EZINE ISSUE III REV.1

Code Injection – 1ClickDVDCopyPro by CondZero 8

1.2.1 TARGET

The target is an application called 1CLICK DVD COPY PRO. You can get it at the link below:

Download

1.2.2 PREPARATION

Tools used: OllyDbg v1.10, OllyAdvanced v1.26 Beta 10 for WinNT.

Since I have had some experience with a similar application before, I simply check all the exceptions and for

Events I check off Break on new module (DLL) see below:

Figure 2

1.2.2.1 CHECKING OUT THE TARGET

We first open our target in Olly. Don’t bother analyzing it at this point. It’s compressed and encrypted. We

simply hit F9 and run our target and wait for the DLL load events to occur. In our previous Ezine, I reported a

dll: vso_hwe.dll that could be used to inject our code. The pro version offers us another option (dll) which we

are going to use.

Figure 3

Press OK. Go into the executable modules screen in Olly as shown below:

http://www.lgsoftwareinnovations.com/download.asp

ARTEAM EZINE ISSUE III REV.1

Code Injection – 1ClickDVDCopyPro by CondZero 9

Figure 4

Notice our dll of choice: VsoVprev.ax is highlighted in Red. Notice also its extension .ax, not usual for a dll. We

want to follow this entry, so right click on this line and select follow entry as shown below:

Figure 5

Notice we have plenty of “goose eggs” for injecting code via a code cave (see below):

Figure 6

ARTEAM EZINE ISSUE III REV.1

Code Injection – 1ClickDVDCopyPro by CondZero 10

1.2.2.2 ANALYZING THE TARGET

So why have we chosen a dll to inject our code? Timing of the dll entry in relation to the necessary decryption

of the code section of interest to occur, and probably most important, the ease in which the process of

patching can be implemented. From our previous EZine, the literal we are most interested in is shown below

from Olly’s memory map:

Figure 7

In some cases an application may push this value, but in this application, it moves this value to register ECX.

There’s a function that is interrogated (run) twice which checks for a valid registration. If a valid registration is

found, the function returns EAX == 1, otherwise, invalid registration is EAX == 0. Our goal is to patch this

function to always return EAX == 1. The function we are interested can be found by setting a HWBP on access

(DWORD) on the address: 0055DC5C shown above. After doing so we can run our target (F9) and we will

eventually break on our memory address. We must now look deep into the stack to find the function, or in this

case, a return address within the function, shown below:

Figure 8

Our reference to “SerialCode” address: 0055DC5C is displayed more than once in the stack, but we are

interested in the first instance. If we follow return address: 0055DB6E above in the disassembler we are in the

main registration function. Scroll to the top of this procedure as shown below:

ARTEAM EZINE ISSUE III REV.1

Code Injection – 1ClickDVDCopyPro by CondZero 11

Figure 9

The Red highlighted instructions above are those which will be changed by our code injection. When this

procedure returns (after our patch), register EAX will equal ‘1” and the subsequent test for validation shown

below:

Figure 10

EAX should equal 1 at address 0056946B shown above. So on to our task to inject some code.

1.2.2.3 INJECTING OUR CODE

We know the function to be patched. We also know by what means to patch it (inject our code). We will rerun

the application again, wait for our dll of interest (VsoVprev.ax) and make the following changes. Note: Refer to

figure 6 for the “Before” image.

Figure 11

Changes highlighted in grey, above. We now jump to our cave, noting the instructions we have altered which

must be saved and reexecuted upon return:

ARTEAM EZINE ISSUE III REV.1

Code Injection – 1ClickDVDCopyPro by CondZero 12

Figure 12

Here we save our registers and flags. We move the beginning address of our registration function from figure 9

to register ESI so we can perform some changes. We load this address to register EDI and move the following

sequence of instructions:

Figure 13

Note: That the value of register EAX upon return will equal ‘1’. We then execute our saved instructions and

return to the next instruction of the dll. Remember to right click and save to our executable the (2) selections

noted in figures 11 and 12 above. We save these changes to a new executable (dll in this case:

VsoVprev_new.ax). We can then rename the original dll and rename our saved dll to the original. We are now

ready to test our code injection.

Restart the target with no HWBP’s or any Events checked in Olly. I won’t show the screen, but it runs good,

doesn’t it.

1.2.2.4 CONCLUSIONS

Well, we showed you one way in which to inject code into a packed / encrypted executable to accomplish our

goals. Dll’s can be your friend in many cases. I hope you learned something new.

ARTEAM EZINE ISSUE III REV.1

MUP AnyDVD v6.1.3.6 by CondZero 13

2 MUP ANYDVD V6.1.3.6 BY CONDZERO

2.1 INTRODUCTION

AnyDVD is a Windows-based driver that works automatically in the background to unprotect encrypted movie

DVDs. This popular software is the subject of many RCE forums. Most of the “cracks” you will see posted

revolve around a “Well Known” serial code or a “patch + keygen” fix. I thought it might be interesting to

produce a Tutorial that analyzes the limitations and walks through some of the methods to obtain “serial

code” functionality without external help.

Peid shows us the type of protection below:

There’s a fairly straightforward method to finding the OEP, dumping and fixing the IAT, analyzing the

application and finally to patch which will be shown in this tutorial. I am not going in-depth on the protection

system. Also note that an additional upgrade is available for this application with additional features for full

HD-DVD (High Definition DVD) and Blu-Ray support, including decryption of HD-DVD & Blu-Ray movie discs. I’ll

point out some steps needed to gain access to this functionality. If you are well versed with the tools described

in Setup (below), than you should have no problem following along. With this in mind, let’s move on.

2.2 MUP ANYDVD V6.1.3.6

2.2.1 TARGET

You can get it at this link: SlySoft Products | Copy Movie DVDs with AnyDVD and CloneDVD

2.2.2 SETUP

Tools used: OllyDbg v1.10, PETOOLS v.1.5.800.2006 RC7, ImpRec v1.6.

2.2.3 CHECKING OUT THE TARGET AND FINDING THE OEP

We first open our target in Olly. Olly warns us immediately that our entry point is outside the code and that

our application maybe compressed. You don’t need to analyze at this point. Simply go to Olly’s *Executable

modules] window and right click on kernel32 > view names. We are looking for the GetModuleHandleA API.

Find it and follow it in the disassembler and either set a HWBP on execute or F2 breakpoint on the beginning of

this API. Now you can run [F9] the target in Olly. You will break on this API after a very short while. Now we

can go into Olly’s *Memory Map+ window. Find the code section beginning at address: 00401000 and set a

memory breakpoint on access. Run [F9] the target. We will break again on the GetModuleHandleA API. Run

[F9] again and we break on our OEP, see below:

http://www.slysoft.com/en/

ARTEAM EZINE ISSUE III REV.1

MUP AnyDVD v6.1.3.6 by CondZero 14

Figure 14

2.2.4 DUMPING THE TARGET

I chose PETools for dumping the target. If we were to dump normally with LordPE, we would end up with a

small dump. Why? The sections are protected. With PETools, we can simply find our process and let it dump it

for us and we will get a complete dump. After dumping the target, we can fix the EP in the header to our OEP

from figure 1. Do not close the target at this point.

2.2.5 FIXING THE IAT

Fortunately with this version of Yoda’s protector, there are no emulated API’s or anything too strange. We can

simply fire up ImpRec on our target and find the process. For options, we are going to choose Create new IAT.

Enter the OEP as shown below and press IAT AutoSearch. ImpRec will return with the imports found message.

Press okay on this messagebox.

We can now press Get Imports. You will get back a screen that looks similar to the following:

Figure 15

Now we can simply press Show Invalid and a bunch of highlighted entries will appear. Right click on the

highlighted portion of Import Functions Found window and select Trace Level I (Disasm). You will be rewarded

with the Congratulatory message. Now we can select Fix Dump and point to our dumped file.

ARTEAM EZINE ISSUE III REV.1

MUP AnyDVD v6.1.3.6 by CondZero 15

2.2.6 ANALYZING & PATCHING THE TARGET

Before we do anything else, it is important that we rename the original target name to something else, and

rename our new fixed dump to the original. The important considerations are the time limitation, the nag

screen, and the inability to save settings. One more thing. The application behaves similar to Armadillo’s father

/ child protection in that it sets an event, checks for its existence and starts a new process with an argument

string. We can temporarily disable this mechanism so as to analyze a single process without the need to attach

to a new one. In order to do this we can let Olly analyze our new dump (if not already done) and in Olly’s code

window, right click and select > Search for > All intermodular calls. Find the CreateProcessA Call and double

click on it and set a breakpoint [F2]. Run [F9] our target to this BP. Look at the stack window and notice the

argument passed on the CommandLine below:

Figure 16

Without a great deal of effort, we can see a date string (release date) and perhaps a productid appended to it.

The application wants this argument “stamp” in order to run. We can simply copy this string to our clipboard

and paste it into Olly’s > Debug (menu item) > Arguments as shown below:

Figure 17

Press OK. Olly will ask you to restart the application. Hold off on this for a moment. We should still be at the

BP. Go into Olly’s *Call stack of main thread+ window and select the first CALL highlighted below:

Figure 18

ARTEAM EZINE ISSUE III REV.1

MUP AnyDVD v6.1.3.6 by CondZero 16

Double click on this line and you will be here:

Figure 19

The CALL highlighted above at address: 00436949 is for the CreateProcessA API. More importantly is the

instruction at address: 00436936 above. There is a call immediately above it for (ntdll.RtlGetLastWin32Error)

and is looking to compare the result with “B7” or message “Already exists”. Set a BP on this address. Now we

can go ahead and Restart [Ctrl + F2] the application. When we come to our BP we can modify the code as

follows:

Figure 20

Now we don’t have to be bothered with attaching to a new process. We will need to apply the code above

each and every time we restart the application. We also will need the argument string in Olly.

2.2.6.1 TIME LIMITATION - EXPIRATION

The next order of business is the trial limitation nag screen. The application checks if we have a valid “Key” and

Serial code. The CALL address highlighted below leads to the functionality that determines if we have a valid

registration key. Step into this function for all the details.

Figure 21

ARTEAM EZINE ISSUE III REV.1

MUP AnyDVD v6.1.3.6 by CondZero 17

After returning from the CALL above is a TEST EAX,EAX condition which will normally be equal to ‘1’. The

application will determine how much time is left of the 21 day trial. There are (3) key areas here. (1) is a

variable that stores the amount of time allowed. Another variable stores the time left. Notice above at

addresses: 00430930 and 00430935 are (2) global variables for this purpose. The first address stores the trial

period time. The 2
nd

 stores time left. Knowing this in advance, we can influence the decision mechanism by

moving some value to EAX that is greater than 0. We could simply NOP the TEST EAX,EAX condition and let EAX

== 1. Or, you could move some other register value > 0 to EAX, perhaps, as in my case, the value in register ESI

as shown below:

On my machine this was equal to hex ‘0x44’ or decimal 68 “days” left of a 68 day trial period because both

values will be the same.

2.2.6.2 NAG SCREEN

We can find the function for the nag screen. I cheated a little bit. I previewed the resources using PE Explorer.

The resources are normally stored in the AnyDialog.dll, but we will find the nag screen dialog in the main

module. In Olly’s *Memory map+ window, view the resources section beginning at address: 004BC000, right

click on this line and choose > View all resources. Scan down to what maybe the last line shown below:

In Olly’s code window we can search for > All commands the value “1B” being pushed in the program.

Olly will return a bunch. Select BP on every command for all found commands. Run the target. You will break

in the “nag screen” function. Scroll up a few lines and you’ll see the ascii literal warning about “…days left …”,

etc.

Simply scroll to the top of this function and if you want, you can set a BP shown below:

Figure 22

ARTEAM EZINE ISSUE III REV.1

MUP AnyDVD v6.1.3.6 by CondZero 18

But to be more expedient, [and there is more than one way to do this], We can simply NOP the MOV

instruction above. The value in EAX will remain unchanged at ‘1’. This will force the test condition to take the

JNZ and move past the nag screen.

2.2.6.3 GENERAL SETTINGS & REGISTRATION INFORMATION

The “trial” version of the application claims to not save any settings after the application exits implying the

settings are only saved while the application remains active. This statement is only partially true. The settings

have to be stored somewhere and retrieved for interrogation. The “trial” version simply skips the process of

retrieving this information and only displays the “default” options on application launch. You can easily verify

how the application is storing the settings. The absence of any *.ini file suggests the registry is the data

warehouse for this activity. Simply scan for the RegSetValueExA API and set BP’s on all of them and you’ll find

the addresses where your settings get saved. The restoration of settings is a bit trickier. The application

doesn’t directly CALL the API, but moves the API to a register variable to mask it’s use:

0041D376 |. 8B2D 00E05000 MOV EBP,DWORD PTR

DS:[<&advapi32.#494>] ; advapi32.RegQueryValueExA

and then simply CALLS the register variable.

For those concerned about what information is displayed, a certain function is called once before displaying

the application in the system tray (WM_ACTIVATE) and then each time you right click (WM_LBUTTONDOWN)

on the application for “Settings”.

Next is determining the registered to: “ “ and serial code in the information window. The application looks to

retrieve this information in another function. If you have a valid registration, then that info would appear

otherwise “Nobody” appears with the trial time left. What is important is that register BL is set to ‘1’

registered, or remains ‘0’ unregistered and moved to register AL at the end of the function. In turn, register AL

is moved to variable and used for determining “saved settings”, display of the “order” button and “Registered

to:” in the “Settings” dialog.

The beginning of what I’ll call the “Registration” function appears below:

Figure 23

Notice that register BL is cleared at address 00431461. I have set a BP on address 0043145B. The DWORD

pointer *004B6488+ points to a DWORD that contains the address “value” of whom the application is

“Registered to”. Note: if not registered, this DWORD would contain ‘0’s (i.e. no valid DWORD address). Find

ARTEAM EZINE ISSUE III REV.1

MUP AnyDVD v6.1.3.6 by CondZero 19

some ‘0’s in the same section referenced and hexedit your ascii literal into this area and simply reference that

DWORD value in DWORD pointer 004B6488 above. Register EAX is tested for a valid DWORD address and if

none found the function bypasses the remaining registration details so ‘1’ is never moved to register BL. If you

are going this route you will need to consider one additional change. For those that don’t want to be bothered

with this, you can simply make the following change and skip the rest of this section.

2.2.6.4 REGISTERED NAME OPTION (CONT’D):

You have a registration name, but no serial number. The easiest method here is to make the following change:

Figure 24

The highlighted line at address 004314D4 above takes you to the all important line below:

00431535 B3 01 MOV BL,1

After stepping through this function a few times, you will see what is going on.

2.2.6.5 HD DVD & BLU-RAY SETTINGS

Unless you have purchased the upgrade, this functionality is disabled. You cannot change any of the settings.

There is a huge function, you can’t miss it because there are literally a hundred moves that is moving literals

and values to variables before the “Settings” dialog is displayed. See beginning of the function below:

ARTEAM EZINE ISSUE III REV.1

MUP AnyDVD v6.1.3.6 by CondZero 20

Figure 25

In this function is a test for the HD DVD & Blu-Ray upgrade. Step through this function and you will see the

details. If we scroll down to the following section shown below, set (2) BP’s as shown:

Figure 26

I have set (2) BP’s, one at address 00431830 and 00431851. The first BP is for reference for the change that will

be required to enable changing the options for HD DVD and Blu-Ray within the Settings dialog. Address

00431859 moves the good ‘1’ value or bad ‘0’ value to a DWORD address that is later conditionally tested in

the ANYDIALOG.DLL module. We want the good value ‘1’ in this address so we make the following change to

the grey highlighted line above as shown below:

Now register ECX will contain the good value ‘1’. This takes care of enabling the settings.

ARTEAM EZINE ISSUE III REV.1

MUP AnyDVD v6.1.3.6 by CondZero 21

2.2.6.6 HD DVD & BLU-RAY FUNCTIONALITY

The Context menu below highlighted section in blue is ordinarily disabled and a message box appears

indicating you need to purchase the upgrade to use:

To enable this feature pause the debugger “Ollydbg” at the messagebox above and look in the Call Stack of

Main Thread window. Double click on the grey highlighted line below:

Figure 27

This takes us to a function that checks if we have the upgrade option. Note I have already made the necessary

change to reflect the upgrade option shown below:

Figure 28

The application will now take the JNZ at address 00432497 and bypass the “Sorry” message which you can see

by scrolling further down. This change is too easy and I suspect there may be another condition lurking in the

background.

ARTEAM EZINE ISSUE III REV.1

MUP AnyDVD v6.1.3.6 by CondZero 22

2.2.6.7 GOTCHA’S

While doing some preliminary testing of the patched version of this application, I noticed an immediate

problem when viewing the Settings >> Information window. As soon as I pressed the OK button the application

exited. Upon further review, I discovered an address pointer value which is tested in the ANYDIALOG.DLL

module after checking to see if you are registered and whether to display the message:

“This is a trial version of AnyDVD. Settings change will be lost after program exit.

The registered version will save settings and restore them on program start."

The application then has a few conditional tests prior to an ExitProcess API. See below:

Figure 29

The value I showed for the DWORD PTR DS:[ECX+514], Address: 009F1FBD appears in the pane window below:

Stack DS:[0012CEA8]=00000000

EAX=00000001

Since our value == 0, when compared with the value of 3E8, the

application would take the JB and jump to ExitProcess. The stack for

this address range shows the following.

Interesting, an “&Order…” literal immediately below our address of concern. More investigation reveals that

this value is tied to whether or not you have a valid serial number. It gets more interesting after this. If you

have entered a serial number beware of a file called AnyDVD.chk. On my machine this file is located in the

following folder:

C:\Documents and Settings\Administrator\Application Data\SlySoft\AnyDVD

Yours may be different. The existence of this file in combination with perhaps an invalid serial number ?? or

old serial number ?? Can cause the application to issue the “Your trial period has expired” messagebox. Just

delete this file and continue. Getting back to the ExitProcess problem, I traced the ASCII “&Order…” move to

the following routine:

ARTEAM EZINE ISSUE III REV.1

MUP AnyDVD v6.1.3.6 by CondZero 23

Code pane:

DS:[004B6544]=003ADFA0, (ASCII "&Order...")

ECX=003AFF20, (ASCII "About")

The recipient address of [ESI+518] is +4 our concerned address. We can simply change this move to the

following:

Our aim is to get a value in this address > 3E8. Also, we don’t want to patch the ANYDIALOG.DLL if we don’t

have to. At this point, you should save all your patches and copy them to the executable. Remember that the

saved executable name must be the same as the original. Also, we do not want to save the patch that prohibits

the CreateProcess from executing. This patch was only to analyze the application.

2.2.7 CONCLUSIONS

There could possibly be more mysteries uncovered in this application and certainly better ways to patch. I

freely admit that I don’t really use this application, but just wanted to get a better understanding of its process

flow. My goal was to analyze the major limitations and point out some options from a precursory perspective. I

hope you enjoyed reading this Tutorial and perhaps learned a few things about it.

ARTEAM EZINE ISSUE III REV.1

Patching Prima eGuides (single byte patching) by SSlEvIN 24

3 PATCHING PRIMA EGUIDES (SINGLE BYTE PATCHING) BY SSLEVIN

3.1 INTRODUCTION

After a lot of wondering thru the Internet I finally found something interesting to reverse and at the same time

to have a tight connection with my favorite file protector, you guess, ActiveMark.

But the scope of this tutorial won’t be unpacking and patching ActiveMark although targets are protected with

it, since this matter is well explained in previous tutorials written by condzero.

Namely, guys from PrimaGames got an idea how to earn some money by making e-Guides for different

software (mostly games).

Price of this stuff is fair, but hey, who is talking about the price? Reversing is the topic, right? So let see how to

make this stuff work without limitations.

3.2 PATCHING PRIMA EGUIDES

This tutorial will show you how to patch exe file used to browse a pdf document which is password protected

and its trial use is limited to first ten pages.

3.2.1 TARGET

Target used in this tutorial can be downloaded here:

http://d.trymedia.com/dm/primag/0761550259_1/trygames/MasterofOrionIIIPrimaOffici.exe

3.2.2 TOOLS

 OllyDbg v1.10

 Some brain

3.3 INSPECTING THE TARGET

Initial nag screen which informs us about the fact that we are using trial version of software is classic form

used by Macrovision (see Figure 30.) The only difference is that there is no time limitation but number of

pages you can read for free (10 pages).

http://d.trymedia.com/dm/primag/0761550259_1/trygames/MasterofOrionIIIPrimaOffici.exe

ARTEAM EZINE ISSUE III REV.1

Patching Prima eGuides (single byte patching) by SSlEvIN 25

Figure 30

If you think that after successful removing of ActiveMark 5 you also solved trial limitations you’ll be

disappointed. Trial limit of ten pages is still there (see Figure 31.)

Figure 31

But this also give us a good hint on where to look later for patches, right? (String: Trial Mode).

Last, but not the least, if you try to open pdf document itself which is located in C:\Program Files\Prima

Games\Master of Orion III Prima Official eGuide\pdf you’ll find that it is password protected (see Figure 32.)

Bruteforceing is an option here, but where to find a readymade bruteforcer? (If you know how to make one,

hat down, you don’t need to read this further).

Figure 32

ARTEAM EZINE ISSUE III REV.1

Patching Prima eGuides (single byte patching) by SSlEvIN 26

3.4 FINDING PATCH(ES)

3.4.1 PIECE OF CAKE

It is literally piece of cake to find patches for this stuff. At first I was amazed that there is no other protection

than sole byte comparing. No anti-debug tricks, no checksum, simply nothing.

So, let start. Load your rebuilt target in Olly. Then search for all referenced text strings. After Olly finishes

search, scroll to the top of the list, mark first line, rightclick and search for text: Trial Mode. (I already said that

target is giving us a good hint on where to search). Follow in disassembler (press Enter). You’ll find yourself

in a spot like in Figure 33.

Figure 33

Remark the conditional jump (JE) which jumps over Trial Mode if taken. Plain stupid method of patching would

be to change conditional to unconditional jump (JE to JMP), problem solved, right?

Wroong … Try to do this, and you ll find yourself in lalaland.

In a reversers way, you will try to find which value is set at memory location pointed by value of ESI register

plus 1AC h and then compared with value of less significant byte of EBX register – BL (see the comparison

above conditional jump).

How to achieve this? Simply, set breakpoint at 403490 (F2) and run

application (F9). After Olly breaks check the content of its pane window

and you will see that BL is 00 and is compared to 0260723C (ESI+1AC h)

which is 01.

After comparison is done, conditional jump won’t be taken and we are in trial mode.

ARTEAM EZINE ISSUE III REV.1

Patching Prima eGuides (single byte patching) by SSlEvIN 27

Now, we have to find where the value of 0260723C is set to 01. Common sense is telling us that it happens in

some CALL above comparison. So set breakpoint at this line:

0040348B E8 0BE5FFFF CALL dumped_3.0040199B

Restart application and follow your new breakpoint in disassembler. Press Enter to get into the call without

executing code. You ll see something similar to Figure 34.

Figure 34

See, there are two lines of code which are setting value of ESI+1ACh:

004019A6 MOV BYTE PTR DS:[ESI+1AC],1 to 0

[…omissis…]

004019C1 |. /75 07 JNZ SHORT dumped_3.004019CA

004019C3 |. C686 AC010000 00 MOV BYTE PTR DS:[ESI+1AC],0

004019CA |> \8D4D FC LEA ECX,DWORD PTR SS:[EBP-4]

So, you have two options for patching: either you will change 01 to 00 at line 004019A6 or you will NOP

conditional jump at line 004019C1 (75 07 to 90 90).

After assembling any of this changes copy them to executable, save under another name and you are done!!!

ARTEAM EZINE ISSUE III REV.1

Patching Prima eGuides (single byte patching) by SSlEvIN 28

3.4.2 AESTHETIC PATCH

To those of you who do not like any kind of nag screens showing up. You can remove nag screen shown in

Figure 35 by simply NOP–ing a call to this procedure at line:

004012D4 |. FF90 B8000000 CALL DWORD PTR DS:[EAX+B8]

Figure 35

And, yes, how to find it? Simply, trace thru the code with F8, and after this nag appears set breakpoint one line

above EIP. Since steping into (F7) this call and assembling RET at the beginning of nag subroutine doesn’t work

simply NOP this call and nag is history.

3.5 CONCLUSIONS

As you could see, this was incredibly easy to do. There is a whole bunch of these on trygames.com and if you

want to practice be my guest. Personally, I don’t need this stuff, (uuuhhh, I can’t even remember when I

played some game). Weird kind of limitation was my motivation to reverse this.

ARTEAM EZINE ISSUE III REV.1

ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath 29

4 EXAMDIFF 4.XXX REVERSING THE PROTECTION SCHEMA BY SHUB-NIGURRATH

4.1 INTRODUCTION

The program is a really interesting and powerful comparison program. I will not list all the advantages of this

tool, because I am not interested in them for this tutorial. Also according to the Foreword section of this issue I

decided to write this contribution just because the tutorial contains some “lessons”. The previous version of

this program has been keygenned since a lot of time, cracked and abused in all the possible ways. The new

version 4.0 has been worked for a long time then I was expecting some type of improvement in protection. I

started to reverse this last version just because I was curious to verify which improvements were running.

You can download ExamDiff Pro (www.prestosoft.com), I tested the described approach on versions up to

4.0.23.

4.2 APPROACHING THE ENEMY

The approach I will show works for a lot of versions, from 3.4.2, 3.5.1.5 up to 4.0.0.xx (I tested it up to latest

build too).

The program is a normal MFC program, not compressed, which is using an encryption-based licensing scheme

and has a limited trial time (30 days). Previous versions of the program have been keygenned and keygens are

out on the net. I will not teach where to find one of them but one of the team which made them is CORE...I will

not even try to understand the keygen algo..

The program, once installed, has an initial nag reminding you that your copy is a trial and, after 30 days,

several functions are disabled (and also the title bar reports it).

The interesting result you get reversing this program is that you realize how developers rarely learn from their

past errors, this new version has been worked for a long time, but the protection is as lame as before. It didn’t

take long time to realize how to generally patch it.

http://www.prestosoft.com/

ARTEAM EZINE ISSUE III REV.1

ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath 30

The first thing to do (after installation of

course) is to run the main program within

Olly and to analyze it using IDA, for a higher

and graphical view of functions and

branches. I usually use both tools

simultaneously, for different reasons I will

not explain here: the main reason is that IDA

gives you a better view of the program

structures and branches, as well as library part of code (using the signatures), but the debugger is not as usable

as OllyDbg, which remains the top class win32 Ring3 debugger.

4.3 REVERSING THE REGISTRATION SCHEMA

The first thing I tried was to test the older serial numbers just to see if the program was accepting them. I used

this serial, which was good for version 3.1:

H+Jgcces3ANbNh8mC+ldHgpALFNelaAEdneZ1R/3h9n2huUEL0Hr+K

/PT8FU2/ZK1slC74IsZgu4FbdtfYjz0njjISAvyKbpifrZfpe0ESzt

OIhfA5paKXtIGbJu5JYX6VRq+6JzlStfR6puDK2Q5iWI8sB/EHkxia

1rH2WfqrnkfbBrrrdylnEvSu4E8JC6YPHG2F5JqJ/3bN/+k3JlBbXP

TJmghW70dwiuX32XZGtSL5iCrIC0TtFwrT/ZJP8pkGpT17SkrOG1TE

1gykc+sR9avpl3zMkwz/ijSwVQlUVlLXJOs6W6oBjBBC5ifvqrLE4s

pOmKLcfla9YHI0rEgeb5y2XQhhrdJ2dryiJC474=

If you enter this serial the program warns you that the serial is old and that you must ask for a new one to

PrestoSoft.

0046465A |. 68 38376200 PUSH ExamDiff.00623738

; UNICODE "Failed to register. Please verify your key and try again, or request a

new key from PrestoSoft."

this message is into the function sub_464164 (using the name IDA assign to it).

Thanks to the string analysis done by IDA, you

can see that, a little above this code, there the

following PUSH, which pushes (and IDA tells you

clearly) the string "registered successfully" (see

figure beside).

N
o

te •After having patched the program I realized that there
was an existing patch already on the net, which was
using almost the same approach (it is by CW2K), damn
^_^. Anyway I decided to align this tutorial to that
patch, integrating it with my comments.

ARTEAM EZINE ISSUE III REV.1

ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath 31

00464633 |. 68 00376200 PUSH ExamDiff.00623700

; |Arg1 = 00623700

Needless to say that this is the correct place where to start your journey.

The two branches of this function, the goodboy and the

badboy, are starting from two important jumps:

jump 1:

.text:004643B0 cmp eax, [ecx]

.text:004643B2 jnz loc_46464D ; good

boys don't jump

jump 2:

.text:004643F2 call sub_463F2D

.text:004643F7 test eax, eax

.text:004643F9 jz loc_46464D ; good

boys don't jump here

If you debug the program you'll realize that not jumping

there, directly brings you to the "registered successfully"

message.

If you force these two jumps you will directly go to the

section of the function which is responsible of coding and

creating the registration number file, the password.bin

file, holding the registration number.

N
o

te

•NOPing these two jumps will not
resolve the problem. It will force the
program to accept any serial you enter
but the program wil still show the initial
nag and will remain unregistered.
There's an additional check I will explain
later..

ARTEAM EZINE ISSUE III REV.1

ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath 32

4.3.1 STUDYING THE JUMP 1

Then let we approach the two jumps one by one. The first one (004643B2) depends by the CMP instruction

just above (004643B0) where (debugging) you have:

 EAX=FFFFFFFF and [ECX]= B09FA064

EAX is always equal to FFFFFFFF, but what about the constant B09FA064 pointed by ECX? What I did was to do

a "search for all constants" on Olly (or similarly with IDA) using the value B09FA064.

The result is that the constant is moved to an array at the function sub_456BAE.

This function is really interesting. I will talk about it a little later.

Anyway at the moment what I did is to modify the value pointed by ECX to FFFFFFFF -> [ECX]=FFFFFFFF.

This allows skipping the first jump correctly, but I will handle the function sub_456BAE separately into one of

the following sections

4.3.2 STUDYING THE JUMP 2

Now I am worrying of the second jump at the address 004643F9, which depends by the value of EAX (which

shouldn't be 0 to be a goodboy), which in turn depends by the call above the cmp:

.text:004643F2 call sub_463F2D

The deeper you patch the more robust is the patch, then I patched the call where it zeroed out the EAX

registry.

ARTEAM EZINE ISSUE III REV.1

ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath 33

Figure 36

Figure 36 clearly shows that there’s only one exit path which set to 0 the value of EAX. Than the correct place

where to patch the program is here:

Original code:

00464086 33C0 XOR EAX,EAX

Patched code: I used an opcode with same weight of the original one, using the same number of bytes

(important to not overwrite surrounding instructions), that forces EAX!=0

00464086 B0 01 MOV AL,1

ARTEAM EZINE ISSUE III REV.1

ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath 34

4.3.3 HANDLING OF FUNCTION SUB_456BAE WHERE SERIALS VERSION ARE CHECKED

As said in section 0, the function sub_456BAE is crucial for the skipping of the first jump. Its structure is very

well disassembled by IDA: it’s a waterfall of tests and actions (see Figure 37).

Figure 37

What this function does?

The function controls that the serial number, read from password.bin file or manually entered, is one

generated for version 4.0.x of ExamDiff Pro. To answer this question, the function receives through the registry

a string, holding the version number, which has been found inside the serial number.

The obvious thing to do is then, to place a BP at the beginning and see what it

actually the function receives. The function receive as parameter the string

"3.1" which matches with the serial I used (that was good for version 3.1)..

You can easily find this placing a BreakPoint here:

00456BAE /$ 55 PUSH EBP

EDX is equal to "3.1" in unicode

A bird-fly overview of the function tells that there's a nested sequence of jumps, checking against the given

string: the branch corresponding to the string "3.1" is the following:

ARTEAM EZINE ISSUE III REV.1

ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath 35

loc_456F55:

 mov eax, [esi]

 push edi ; MaxCount

 push offset a3_1 ; "3.1"

 push eax ; Str1

 call _wcsncmp ; this call is identified by IDA only..

 add esp, 0Ch

 test eax, eax

 jnz short loc_456F73

The exit points are all MOVs of this type (here I wrote just the instructions executed when the parameter is

"3.1"):

.text:00456F6A mov eax, [ebp+ebx*4+74h+var_CC]

.text:00456F6E jmp loc_457004 ;jump to the function exit

After execution of the instruction at 00456F6A we have EAX=B09FA064. This value is one of those handled at

the beginning of this same function!

Reassuming then, we have a function that initializes a map of crypto constants, which are used to place a

return value into EAX, starting from the version of the program found inside the license code. According to

what I found also on section 0 this same constants are used to handle the first jump I identified before. These

constants are compared against a value of FFFFFFFF at 004643B0.

The patch I did is an obvious one: force the function to always return FFFFFFFF so the compare at 004643B0

whatever constant will be used will be always true.

00456BAE 33C0 XOR EAX,EAX

00456BB0 B8 FFFFFFFF MOV EAX,-1

00456BB5 C3 RETN

00456BB6 90 NOP

00456BB7 90 NOP

00456BB8 90 NOP

which is equivalent to this code:

sub_456BAE() {

 return -1;

}

This is the resulting second patch:

ARTEAM EZINE ISSUE III REV.1

ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath 36

Original Code:

00456BAE /$ 55 PUSH EBP

00456BAF |. 8D6C24 8C LEA EBP,DWORD PTR SS:[ESP-74]

00456BB3 |. 81EC 90010000 SUB ESP,190

Patched Code:

00456BAE 33C0 XOR EAX,EAX

00456BB0 B8 FFFFFFFF MOV EAX,-1

00456BB5 C3 RETN

00456BB6 90 NOP

00456BB7 90 NOP

00456BB8 90 NOP

4.4 TESTING WHOLE THING & CONCLUSIONS

Once you patched the program use one of the mentioned keygenerators available for older versions of

ExamDiff Pro, generate a key and copy the generated passowrd.bin file, or paste the generated key in the

activation window (depending on the keygenerator you'll use). Close and restart and you'll have a fully working

program.

I will leave to you to properly create an efficient search&replace patcher, using an unique invariant byte

pattern common to all the versions of this program (it's not that difficult), what I can tell is that this patch

works for all the mentioned versions.

N
o

te

•The function sub_456BAE is directly called only by the function
sub_45F597 which is directly connected to the interpretation of
password.bin file (already read from disk). This function is called a few
instruction above the first of the two jumps I already described (in this
case receives the buffer coming from the Activate dialogbox). These
constants are then connected to the decryption of password.bin file into
the resulting serial number. KANAL for PEiD doesn't reveal anything here,
probably then the developers team used a proprietary crypto system, or
a customized one.

ARTEAM EZINE ISSUE III REV.1

Reversing Business Translator 9.00 by kaira 37

5 REVERSING BUSINESS TRANSLATOR 9.00 BY KAIRA

5.1 INTRODUCTION

The Target Business Translator 9.00

Available url http://www.zhangduo.com

The Tools OllyDbg 1.10, PEiD

The Protection No Protection

Category Serial Fishing

Level Beginner

Recommended Tools CrackersKit 2.0

All the tools can be available on these following sites :-

 http://home.t-online.de/home/Ollydbg --> Ollydbg and Plug-ins

 http://www.teamicu.org --> CrackersKit 2.0 which have almost all the cracking tools.

N
o

te

•A little classical tutorial from Kaira, just to
remember everybody how simple are sometimes
modern programs which should apparently be well
protected, or at least, not so badly unprotected.
Years of reversing didn’t teach anything?

htttp://www.zhangduo.com/
http://home.t-online.de/home/Ollydbg
http://www.teamicu.org/

ARTEAM EZINE ISSUE III REV.1

Reversing Business Translator 9.00 by kaira 38

5.2 APPROACHING THE ENEMY

Open PEiD. in PEiD go to Open which is ". . ." and load the program which is on Program Files, look at this

picture below

5.2.1 BODY

As you can see from the picture above that - the program is not protected only coded in "Borland Delphi 6.0 –

7.0". Lets us do the little eximanation scheme. Open up BusiTran.exe. It goes directly to the nag screen. I will

assume that we all know what is checking for? the registration key. We are presented with a new window

asking for Registration Name, and a box asking for Registration Code. Enter anything for the box of reg. name,

maybe your name etc, and for the registration code, enter any numbers & press Register Now. We get a

message box saying "Please make sure the registration code and the registration name are correct ". Remeber

to write this message down as we will be searching for it later. Press OK and the program returns to the

window asking for our Registration Code.

5.2.2 SEARCHING FOR A SERIAL

Close BusiTran.exe and open Ollydbg. In Olly, go to File, and Open BusiTran.exe, it will take few seconds to

analyzes the code. We are going to start by looking for the string from the error message we recieved. To do

this, right click on the code window and go to Search For, select All Referenced Text Strings. Look at this

picture below.

ARTEAM EZINE ISSUE III REV.1

Reversing Business Translator 9.00 by kaira 39

A new window will open up with all the referenced strings in the executable. Scroll to the top of the page and

select the first string. Right click and choose Search For Text. In the dialog box enter "Please make sure the

registration code and the registration name are correct" without the quotes. Make sure Case Sensitive is

unchecked. You should end up here.

Double click this string. You should be here.

This string "Please make sure the registration code and the registration name are correct" is the Bad Boy,

Scroll up to see the Good Guy or press Ctrl + G on the Keyboard to go straight to the Good Guy, and type

005018B6 and press OK. You should land here.

Scoll up a little bit to see whats happening above the Good Guy, check this picture below.

ARTEAM EZINE ISSUE III REV.1

Reversing Business Translator 9.00 by kaira 40

Above the Good Guy there is JE BusiTran.00501ADA which Jump straight to the side of a Bad Boy,

so our valid serial number is stored on this CALL BusiTran.00404F78 above TEST EAX, EAX, so lets set a

BreakPoint (F2) on this Call, check this picture below.

Press (F9) on the keyboard to run the Program and the nagscreen that will appear - Enter your Registration

Name & Registration Code, and click Register Now button look at this picture below.

ARTEAM EZINE ISSUE III REV.1

Reversing Business Translator 9.00 by kaira 41

Move back to Olly, after you have pressed Register Now button it breaks at the breakpoint we set, look at this

picture below.

Look also at the Registers (FPU) - EAX 00A0A0E8 ASCII "P5BBMTW2020004-6B61697261" --> my valid serial

number!!!

Right Click on Registers (FPU) and the menu that appears after you’ve right clicked - click Copy all registers to

clipboard, and paste it with Notepad.exe. Look at this picture below.

Restart Ollydbg Ctrl + F2 on the keyboard or press Restart button on Ollydbg & remove the Breakpoint and

press (F9) on the keyboard to run the program or Play button on Ollydbg, when the nagscreen appears - Enter

your Registration Name & Registration Code, look at the picture below.

ARTEAM EZINE ISSUE III REV.1

Reversing Business Translator 9.00 by kaira 42

Click Register Now button, look at this picture below.

Registeration Success! Click OK button.

ARTEAM EZINE ISSUE III REV.1

Reversing Business Translator 9.00 by kaira 43

Your can close Ollydbg now because we've finished serial fishing Business Translator 9.00. Open BusiTran.exe

and click Help -> About... button from the menu, look at this picture below.

Job Well Done!!!

5.3 CONCLUSION

 If you like the program and going to use it please purchase it, because programmers rely on the income in-

order to continue updating their softwares for us!

ARTEAM EZINE ISSUE III REV.1

ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are
doing by Haggar

44

6 EXECRYPTOR FOR DUMMIES OR HOW TO UNPACK EXECRYPTOR 2.4 WITHOUT

HAVING A CLUE WHAT YOU ARE DOING BY HAGGAR

6.1 INTRODUCTION

Hi and welcome to this small ExeCryptor unpacking guide!

You may wonder why another ExeCryptor paper? To tell you the truth, I'm not interested in writing another

ExeCryptor paper (I have already wrote four of them), but Shub-Nigurrath asked me to contribute new edition

of ARTEAM ezine. So why not contribute.

This guide will not explain ExeCryptor in details. Actually, it will not exaplain ExeCryptor at all. This guide will

exaplain how to unpack ExeCryptor with as less possible knowledge about unpacking.

Happy unpacking!

6.2 CONTENT

1. Requirements for this guide

2. Preparations before loading target in Olly

3. Loading target in Olly

4. Using script to kill anti-debug tricks

5. Finding OEP

6. Using script to decrypt imports

7. Dumping to hard disc

9. Reference material

6.3 [1] REQUIREMENTS FOR THIS GUIDE

 OllyDbg 1.10

 Windows XP (or some other NT based windows)

 OllyScript or ODbgScript plugin

 LordPE

 ImpREC

 Some hex editor

ARTEAM EZINE ISSUE III REV.1

ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are
doing by Haggar

45

You will also need some target application protected with ExeCryptor. Any target should do, it also doesn't

mathers exact version of ExeCryptor. I will use "mp3tag 5.4 lite" that is protected with ExeCryptor 2.4.

6.4 [2] PREPARATIONS BEFORE LOADING TARGET IN OLLY

 Disable all plugins that's purpose is to hide Olly from various anti-debug tricks. Plugins such as

HideOlly, OllyAdvanced, etc... can be detected by ExeCryptor.

 Set Olly to break at system breakpoint (check image below):

 Ignore all exceptions and add C000001E to custom ones (check image below):

ARTEAM EZINE ISSUE III REV.1

ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are
doing by Haggar

46

6.5 [3] LOADING TARGET IN OLLY

Now, after we properly configured Olly, we can load target. Since we set Olly to break at system breakpoint,

we will be in ntdll.dll:

That is OK. But Olly is not yet ready to debug target. Hit Alt+B to open breakpoint window:

In this window you can see all breakpoints that are present. OllyDbg automaticly places one temporary

breakpoint to the EntryPoint of debugged program. Delete this bp by selecting it with right-click and chosing

"Remove Del".

As a final step, delete all possible hardware or memory breakpoints too.

6.6 [4] USING SCRIPT TO KILL ANTI-DEBUG TRICKS

Now we are ready to use first script that will kill all ExeCryptor anti-Olly tricks. First script is:

ExeCryptor 2.x OEP.txt

Although this script is called OEP script, it will not find OEP. That name is left from the beggining when I

thought that I will write script for finding OEP on all 2.x ExeCryptor versions. But that looks impossible.

ExeCryptor code is different even in same versions of protection.

But this script will kill all tricks that ExeCryptor uses to detect or kill Olly. After using it, you can hit Shift+F9 and

your target should run fine under Olly.

ARTEAM EZINE ISSUE III REV.1

ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are
doing by Haggar

47

So, for the slow ones: Don't cry at forums that script doesn't work! It will not find OEP! It will kill all anti-debug

traps and tricks! You have to find OEP manually.

6.7 [5] FINDING OEP

Ha! Now is time for you to use your skills and experience. There are no generic way to find OEP and ExeCryptor

code is impossible to trace. For this step you need to have some experience.

Do you know how OEP of different compilers look? Any of these looks familiar:

Visual Basic

Deplhi

Borland 1999 C++

MSVC++ versions

etc...

If you have experience and you could recognize these OEP's, then you will have no problem finding OEP in

ExeCryptor protected applications. If you don't have idea what I'm talking about, than you are lost. Sorry, no

help for you.

Since it there is no generic way to find OEP, we will try to find OEP by using our experience. First script has

killed all anti-debug tricks and we can run application under Olly. Run it, then pause it (F12), and let's have look

at it. If we go to first section, which is at 401000 in my target, we can see that app in my example is compiled

in Deplhi.

Where Deplhi applications have OEP? Always at the end of code section. So I scroll down to the end of code

section in order to find OEP. But instead of finding OEP, I see some weird jumps and calls:

ARTEAM EZINE ISSUE III REV.1

ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are
doing by Haggar

48

What we got here is Stolen OEP Code. Instead OEP, we see some weird code. By mine experience, ExeCryptor

replaces first opcode at OEP with long jump (E9 xxxxxxxx) that leads to obfuscated code. This jump at OEP will

never be executed! That jump is there just for a saftey purpose in case that something tries to use that code.

Real OEP code is obfuscated at address where that jump points.

How we can find where is stolen OEP code? First we need to find long jump. Code in CPU looks bad because

Olly didn't analyse it and we cannot see that jump right away. We can see some jumps and calls that leads to

ExeCryptor sections. Above them code looks really messy. From there I search binary for first E9 byte:

ARTEAM EZINE ISSUE III REV.1

ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are
doing by Haggar

49

Byte E9 is there. I patch 00 byte before E9 to see better:

Now it's clear that this jump leads to section with ExeCryptor code. And by mine logic, that code should be

stolen code:

What now? Reastart application in olly, remove all breakpoints again, use script for killing traps again.

Now, go to that address where we think that stolen OEP should be. You should see nothing but zeros there

now. Place memory breakpoint on access at that line. Keep pressing Shift+F9 untill you break there. After

couple stops in decrypt procedures, breakpoint check (yes it checks for beakpoint on that address), I stoped at

that line. Fact that there is breakpoint check on that line is first confirmation of stolen code idea. If we check

stack, we will get final confirmation:

Stack looks like one in some target that is just loaded in Olly.

ARTEAM EZINE ISSUE III REV.1

ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are
doing by Haggar

50

We have found stolen code. Btw, don't try find original opcodes. It is impossible.

6.8 [6] USING SCRIPT TO DECRYPT IMPORTS

We have found OEP, or stolen code, and now we have to find imports. For this we will use my second script:

ExeCryptor 2.x Delphi IAT.txt

This script finds imports in Delphi, Borland and MASM compiled application. Those applications use jumps to

access imports (MSVC++ use calls). Let's see example in my target:

My script for fixing imports needs to be changed a little for evenry new target. If you open script in Notepad,

you will see this line:

find addr,#ff25????9999# //THIS LINE NEEDS TO BE CHANGED!!!

That line is search pattern that finds all possible import jumps in code section. You can notice that import

jumps in my target have these bytes (check image above):

FF25 xxxx6600

So that is byte mask for my example and I will set script to find those paterns:

find addr,#ff25????6600# //THIS LINE NEEDS TO BE CHANGED!!!

Now script is ready to find imports. Just use it. Wait untill it finishes (that can last).

6.9 [7] DUMPING TO HARD DISC

 If script for fixing imports has finished without error, then you can use ImpREC to retrieve imports.

 Dump target to hard disk with LordPE or any similar dumping engine.

 Rebuild imports with ImpREC.

ARTEAM EZINE ISSUE III REV.1

ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are
doing by Haggar

51

And that is it! Dumped target already works (at least in my case). But there could be some problems:

 First, you should change TLS settings in PE header. I will not explain here how and what to do it. I have

already explained that in one of my previous tutorial. Check references.

 Second, if target has stolen code, it will probably work only on machine where it was dumped. I have

already explained that problem in paper about official ExeCryptor crackme. Check references.

6.10 [9] REFERENCE MATERIAL

Here you can find scripts for unpacking ExeCryptor and some extra info about protection. Anti debug tricks,

how scripts work, etc... all can be found in my previous tutorials. Don't be lazy. Read them.

At BIW reversing (http://www.reversing.be/) you can find four tutorials about ExeCryptor:

 "ExeCryptor official crackme" - Deplhi target, full protection, ExeCryptor 2.1.17, very complete

tutorial.

 "Unpacking ExeCryptor 2.2.4" - Borland 1999 C++ target, no stolen code, completly removing

ExeCryptor layer.

 "ExeCryptor 2.2.50 - unpacking MSVC+ target" - Unpacking MSVC++ target.

 "ExeCryptor 2.3.9" - just some thoughts on this version.

6.11 SCRIPTS

 Script "ExeCryptor 2.x OEP.txt". Just paste it in some text file. Script is also full of comments, so you can

learn how it works:

 Script "ExeCryptor 2.x Delphi IAT.txt":

 Script "ExeCryptor 2.x MSVC++ IAT.txt". This script works little different. It is explained in one of previous

tutorials:

http://www.reversing.be/

ARTEAM EZINE ISSUE III REV.1

OCR Tools Walkthrough of Key Check routine by Anhs!rk 52

7 OCR TOOLS WALKTHROUGH OF KEY CHECK ROUTINE BY ANHS!RK

7.1 INTRODUCTION

The following text is taken directly from Application (www.ocrtools.com).

OCRTools presents state-of-the-art Optical Character Recognition products developed entirely within the

Microsoft .Net platform. Incorporating Neural Networks, Artificial Intelligence, and trained with over 4 million

font variations; our products incorporate the latest optical character recognition technology to solve your OCR

problems. And we offer OCR and a Barcode API/SDK, as well as Desktop Solutions.

All source code has been written in Microsoft VB.Net & C#.Net and compiled as Safe and Managed Code in the

Microsoft .Net Framework.

7.2 TOOL REQUIRED

The main tool you ever required is BRAIN for doing some Logic and Reasoning. You will also need Reflector

(the version I used was 5.0.50.0).

7.3 WALKTHROUGH

We need to find the following fields

 Product Name

 Registration Codes

 Activation Key

http://www.ocrtools.com/

ARTEAM EZINE ISSUE III REV.1

OCR Tools Walkthrough of Key Check routine by Anhs!rk 53

Customer Name & Order ID can be any thing

Okay let’s find out what is Product Name.

Open the app the in Reflector and open
the following node as shown in figure
Note: Assembly Activate must be loaded
into the Reflector

The code that looks more promising to us
is the Method that returns a Boolean
value

ARTEAM EZINE ISSUE III REV.1

OCR Tools Walkthrough of Key Check routine by Anhs!rk 54

Code:

Private Sub cbActivationKey_Click(ByVal sender As Object, ByVal e As EventArgs)

 Try

 Dim prompt As String = ""

 Dim service As New Service

 Me.cbActivationKey.Text = "Retrieving Activation Key, Please wait..."

 Me.txtActivationKey.Text = "Retrieving Key, Please wait..."

 Me.cbActivationKey.Enabled = False

 Application.DoEvents()

 Me.txtComputerID.Text = Me.CZ.GetComputerID

 ' The VerifyRegistration Method looks promising

 Dim flag As Boolean = Me.CZ.VerifyRegistration(

 Me.txtProductName.Text.Trim,

 Me.txtCustomerName.Text.Trim,

 Me.txtOrderID.Text.Trim,

 Me.txtRegistrationCodes.Text.Trim)

 ' If the Property Registered is set to True we branch to Else

 If Not Me.CZ.Registered Then

 Me.txtActivationKey.Text = ""

 Interaction.MsgBox("Invalid Registration Information",

MsgBoxStyle.OkOnly, Nothing)

 Else

 ' This is a custom webservice which retrieves the Activation Key from the WebSite
 ' when the Registration Codes are valid

 prompt = service.GetActivationKey(Me.txtProductName.Text.Trim,

 Me.txtCustomerName.Text.Trim,

 Me.txtOrderID.Text.Trim,

 Me.txtRegistrationCodes.Text.Trim,

 Me.txtComputerID.Text.Trim)

 If ((prompt.Length > 0) AndAlso (prompt.Substring(0, 1) = "*")) Then

 Me.txtActivationKey.Text = ""

 Interaction.MsgBox(prompt, MsgBoxStyle.OkOnly, Nothing)

 ElseIf (prompt.Trim.Length = 0) Then

 Me.txtActivationKey.Text = ""

ARTEAM EZINE ISSUE III REV.1

OCR Tools Walkthrough of Key Check routine by Anhs!rk 55

 Interaction.MsgBox("Invalid Activation Key", MsgBoxStyle.OkOnly,

Nothing)

 Else

 Me.txtActivationKey.Text = prompt

 ' The Verify is the Method which checks the Activation key is valid or not

 If Not Me.Verify Then

 Me.txtActivationKey.Text = ""

 Interaction.MsgBox("Invalid Activation Key",

MsgBoxStyle.OkOnly, Nothing)

 Else

 Interaction.MsgBox("Successfully obtained Activation Key",

MsgBoxStyle.OkOnly, Nothing)

 End If

 End If

 End If

 Catch exception1 As Exception

 ProjectData.SetProjectError(exception1)

 Dim exception As Exception = exception1

 Me.txtActivationKey.Text = ""

 Interaction.MsgBox("Error creating Activation Key", MsgBoxStyle.OkOnly,

Nothing)

 ProjectData.ClearProjectError()

 Finally

 Me.cbActivationKey.Enabled = True

 Me.cbActivationKey.Text = "Obtain Activation Key automatically via

Internet"

 End Try

End Sub

Ok I followed VerifyRegistration Method and landed in the Assembly GF

ARTEAM EZINE ISSUE III REV.1

OCR Tools Walkthrough of Key Check routine by Anhs!rk 56

The VerifyRegistration and VerifyActivationKey are almost identical

Public Function VerifyRegistration(ByVal pProductName As String,

 ByVal pCustomerName As String,

 ByVal pOrderID As String,

 ByVal pRegistrationCodes As String) As Boolean

 Try

 Me.AS = New AutoScaleImage((DateTime.Now.Day * DateTime.Now.Month))

 Me.AS.ProductName = pProductName

 Me.AS.CustomerName = pCustomerName

 Me.AS.OrderID = pOrderID

 Me.AS.RegistrationCodes = pRegistrationCodes

 Me.mRegistered = Me.AS.Verify

 Return Me.mRegistered

 Catch exception1 As Exception

 Me.mRegistered = False

 Return False

ARTEAM EZINE ISSUE III REV.1

OCR Tools Walkthrough of Key Check routine by Anhs!rk 57

 End Try

End Function

Public Function VerifyActivationKey(ByVal pProductName As String,

 ByVal pRegistrationCodes As String,

 ByVal pActivationKey As String) As Boolean

 Try

 Dim computerID As String = Me.GetComputerID

 If (computerID.Trim.Length = 0) Then

 Return False

 End If

 Me.AS = New AutoScaleImage((DateTime.Now.Day * DateTime.Now.Month))

 Me.AS.ProductName = pProductName

 Me.AS.CustomerName = computerID

 Me.AS.OrderID = pRegistrationCodes

 Me.AS.RegistrationCodes = pActivationKey

 Me.mRegistered = Me.AS.Verify

 Return Me.mRegistered

 Catch exception1 As Exception

 Me.mRegistered = False

 Return False

 End Try

End Function

From the above code it is obvious to us that the Method Verify is Important to us let break it down. Before

venturing into the Method let me show what the statement Me.AS = New

AutoScaleImage((DateTime.Now.Day * DateTime.Now.Month))is doing.

Public Sub New(ByVal pZ As Integer)

 Me.mSalt0 = "Gregory" ‘

 Me.mSalt1 = "Joseph" ‘ Keep these in Mind

 Me.mSalt2 = "Matthew" ‘ We might need them

 Me.mSalt3 = "Kalispal" ‘

 Me.mTargetPhrase = "ActionJackson" ‘

 Me.mRandomGenerator = New RNGCryptoServiceProvider

ARTEAM EZINE ISSUE III REV.1

OCR Tools Walkthrough of Key Check routine by Anhs!rk 58

 ‘ Hmmm SHA1 has been selected as HashAlogrithim

 Me.mHash = New SHA1CryptoServiceProvider

 Me.mProductID = &H3E7

 Me.mDemoName = "Demo"

 Me.mProductName = "Demo"

 Me.mCustomerName = "Demo"

 Me.mOrderID = "Demo"

 Me.mRegistrationCodes = "Demo"

 Me.mActivationKey = ""

 Me.INVALID = True

 Try

 If (pZ <> (DateTime.Now.Day * DateTime.Now.Month)) Then Throw New

GF_RegistrationException("Invalid registration keys. ")

 Me.INVALID = False

 Catch exception1 As Exception

 Throw New GF_RegistrationException("OCR is not registered. ")

 End Try

End Sub

Now I’ll break down the Method Verify

Public Function Verify() As Boolean

 Try

 If Me.INVALID Then Throw New Exception("This product is not registered. ")

 ‘ Finally we find out that the ProductName must be one of the following 4 strings and only 3 strings are valid

 Dim str As String = "StandardOCR"

 Dim str2 As String = "StandardBar"

 Dim str3 As String = "CombinationOCR"

 Dim str4 As String = "Demo"

 Dim lList As String = ""

 Dim aSCIICount As Integer = 0

 ‘ Here the Properties which are assigned earlier turned into UPPER CASE and assigned to local variables

 Dim str7 As String = Me.mProductName.ToUpper.Trim

 Dim str8 As String = Me.mCustomerName.ToUpper.Trim

ARTEAM EZINE ISSUE III REV.1

OCR Tools Walkthrough of Key Check routine by Anhs!rk 59

 Dim str9 As String = Me.mOrderID.ToUpper.Trim

 Dim mRegistrationCodes As String = Me.mRegistrationCodes

 Me.mRegistered = False

 Me.mProductID = &H3E7

 ‘ The str7 contains our entered ProductName and this is compared with the above predefined ProductName
 ‘string constants. We get a unique number based on the ProductName we choosed earlier

 If (str7 = str.ToUpper.Trim) Then Me.mProductID = 0

 ElseIf (str7 = str2.ToUpper.Trim) Then Me.mProductID = 1

 ElseIf (str7 = str3.ToUpper.Trim) Then Me.mProductID = 2

 Else

 If (str7 <> str4.ToUpper.Trim) Then Throw New

GF_RegistrationException("Invalid product name. ")

 Me.mProductID = 3

 End If

 ‘ The code starting from here is most important because most of the checking is done here

 ‘ Look here do the type name salt ring any bell

 ‘ I recommend you to look at these Method. Click GetSalt to launch the Reflector

 Dim salt As String = Me.GetSalt(Me.mProductID)

 ‘ Here HashString

 lList = Me.HashString((salt & str8 & str9 & Me.mTargetPhrase))

 ‘ Remember lList is the Refernce HASH which is cross checked with the HASH’s generated by entered

 ‘ RegistrationCode and ActivationKey, and here too GetASCIICount

 aSCIICount = Me.GetASCIICount(lList)

 ‘ The below condition require that the Registration code must be of length 0x13 or 19 characters in length
 ‘ CHECK 1

 If (mRegistrationCodes.Length = &H13) Then

 ‘ The below condition checks for the hyphens in some predefined positions
 ‘ XXXX-XXXX-XXXX-XXXX is what our code must look like
 ‘ CHECK 2

 If (((mRegistrationCodes.Substring(4, 1) <> "-") OrElse

(mRegistrationCodes.Substring(9, 1) <> "-")) OrElse

 (mRegistrationCodes.Substring(14, 1) <> "-")) Then

 Return False

 End If

 ‘ The following code removes the hyphens and once again checks its length and it must be equal to 0x10 or
 ‘16 characters
 ‘ CHECK 3

code://GF:4.1.2719.32931/GF.AutoScaleImage/GetSalt(Int32):String
code://GF:4.1.2719.32931/GF.AutoScaleImage/HashString(String):String
code://GF:4.1.2719.32931/GF.AutoScaleImage/GetASCIICount(String):Int32

ARTEAM EZINE ISSUE III REV.1

OCR Tools Walkthrough of Key Check routine by Anhs!rk 60

 Dim str11 As String = mRegistrationCodes.Replace("-", "")

 If (str11.Trim.Length <> &H10) Then

 Return False

 End If

 ‘ The below condition checks that the first 4 characters in code must be number and divisible by 13
 ‘ This makes our serial look like NNNN-XXXX-XXXX-XXXX i.e., 0013-XXXX-XXXX-XXXX or
 ‘9997-XXXX-XXXX-XXXX
 ‘ CHECK 4
 ‘ QUICK NOTE: The serial cannot contain Hexadecimal even tough we can find numbers upto 0Xffff
 ‘ because the Conversion Method doesn’t specify the base to convert from this limits us to use decimal
 ‘numbers only

 If ((Convert.ToInt32(str11.Substring(0, 4)) Mod 13) <> 0) Then

 Return False

 End If

 ‘ If we made up to this mark the str11 will be assigned the 12 characters form the registration code

 str11 = str11.Substring(4, 12)

 ‘ Look HashString is called once again but this time with Registration Code that we entered

 Dim str12 As String = Me.HashString((salt & str8 & str9 & str11))

 ‘ GetNumberCount?

 ‘Ans: Click Mee......

 Dim num3 As Integer = (Me.GetASCIICount(str12) +

Me.GetNumberCount(str11))

 ‘ Finally we are only ONE condition away from TRUE
 ‘ The First character in Reference Hash and our Registration Code/Activation Key needs to be equal
 ‘ plus num3 must contain a number that is to be same as aSCIICount
 ‘ How are we going satisfy these two

 If ((num3 = aSCIICount) AndAlso (str12.Substring(0, 1) =

lList.Substring(0, 1))) Then

 Me.mRegistered = True

 Return True

 End If

 End If

 Return False

 Catch exception1 As Exception

 Return False

 End Try

 End Function

There are enough hints for us to proceed. If you examined the code where I provided links now I am going
show the code snippet which generates the required Registration Code and Serial

code://GF:4.1.2719.32931/GF.AutoScaleImage/GetNumberCount(String):Int32

ARTEAM EZINE ISSUE III REV.1

OCR Tools Walkthrough of Key Check routine by Anhs!rk 61

 int counter = 0;

 for (ulong i = 100000000000L; i < 999999999999L; ++i)

 {

 string CryptHash = HashString(salt + text8 + text9 + i.ToString());

 if (CryptHash[0] == lList[0])

 {

 int check = GetASCIICount(CryptHash) + GetNumberCount(i.ToString());

 if (check == aSCIICount)

 ++counter;

 if (check == aSCIICount)

 MessageBox.Show(CryptHash + " <---> " + (i));

 }

 }

 MessageBox.Show(counter.ToString());

I choose the numbers 100000000000L and 999999999999L because these are 12 digits in length and the
Method GetNumberCount only work on decimal numbers

ARTEAM EZINE ISSUE III REV.1

The strange case of DBG_PRINTEXCEPTION_C & DBG_RIPEXCEPTION by MOID 62

8 THE STRANGE CASE OF DBG_PRINTEXCEPTION_C & DBG_RIPEXCEPTION BY MOID

8.1 INTRODUCTION

Hidden deep in the jungle we call the Internet, I found a wonderful anti-debugging trick. In a comment on

rootkit.com, dsei shows a trick that is capable of detecting all ring3 debuggers. As far as I know, this trick is not

used in any protection system nor defeated by any debugger or plugin. In this small essay I will show this trick,

it's cause and how to defeat it.

8.2 TRICK DESCRIPTION

If we raise the DBG_PRINTEXCEPTION_C exception (0x40010006) without a ring3 debugger active, the

exception is treated normally. However, if we do the same with a debugger attached, the debugger gets a

OUTPUT_DEBUG_STRING_EVENT and after calling ContinueDebugEvent, the exception has disappeared.

Obviously this difference can be used to detect ring3 debuggers. As an example, here is the core of my xADT

plugin to check for this:

;First, set up a SEH frame

push seh

push dword [fs:0]

mov [fs:0], esp

mov dword [return_code], POSITIVE ;If it's swallowed, a debugger is detected

push 0

push 0

push 0

push DBG_PRINTEXCEPTION_C

call RaiseException

pop dword [fs:0]

pop eax

mov eax, [return_code]

ret

seh: ;If the exception is not swallowed, there

is no debugger

mov dword [return_code], NEGATIVE

xor eax, eax

ret

ARTEAM EZINE ISSUE III REV.1

The strange case of DBG_PRINTEXCEPTION_C & DBG_RIPEXCEPTION by MOID 63

8.3 THE CAUSE

This behaviour is by design. OutputDebugStringA uses it to send messages to the application debugger. The

change from DBG_PRINTEXCEPTION_C to OUTPUT_DEBUG_STRING_EVENT happens in

ntdll!DbgUiConvertStateChangeStructure.

Just take a look at this rebuild source snippet (by Alex Ionescu):

/* Any sort of exception */

case DbgExceptionStateChange:

case DbgBreakpointStateChange:

case DbgSingleStepStateChange:

 /* Check if this was a debug print */

 if(WaitStateChange->StateInfo.Exception.ExceptionRecord.ExceptionCode ==

DBG_PRINTEXCEPTION_C)

 {

 /* Set the Win32 code */

 DebugEvent->dwDebugEventCode = OUTPUT_DEBUG_STRING_EVENT;

 /* Copy debug string information */

 DebugEvent->u.DebugString.lpDebugStringData =

 (PVOID)WaitStateChange-

>StateInfo.Exception.ExceptionRecord.ExceptionInformation[1];

 DebugEvent->u.DebugString.nDebugStringLength =

 WaitStateChange-

>StateInfo.Exception.ExceptionRecord.ExceptionInformation[0];

 DebugEvent->u.DebugString.fUnicode = FALSE;

 }

 else

 if (WaitStateChange->StateInfo.Exception.ExceptionRecord.ExceptionCode ==

DBG_RIPEXCEPTION)

 {

 /* Set the Win32 code */

 DebugEvent->dwDebugEventCode = RIP_EVENT;

 /* Set exception information */

 DebugEvent->u.RipInfo.dwType =

 WaitStateChange-

>StateInfo.Exception.ExceptionRecord.ExceptionInformation[1];

ARTEAM EZINE ISSUE III REV.1

The strange case of DBG_PRINTEXCEPTION_C & DBG_RIPEXCEPTION by MOID 64

 DebugEvent->u.RipInfo.dwError =

 WaitStateChange-

>StateInfo.Exception.ExceptionRecord.ExceptionInformation[0];

 }

 else

 {

 /* Otherwise, this is a debug event, copy info over */

 DebugEvent->dwDebugEventCode = EXCEPTION_DEBUG_EVENT;

 DebugEvent->u.Exception.ExceptionRecord =

 WaitStateChange->StateInfo.Exception.ExceptionRecord;

 DebugEvent->u.Exception.dwFirstChance =

 WaitStateChange->StateInfo.Exception.FirstChance;

 }

 break;

As you see also DBG_RIPEXCEPTION gets a special treatment. By raising this exception you can send a

RIP_EVENT to the debugger. This will make Olly break. Again this exception magically disappears when a

debugger is present.

8.4 THE SOLUTION

With what you know now, it is very easy to find the solution. You might want to try finding it yourself before

reading further.

Seeing how the problem is the special handling of those two exceptions, the trick is to remove that special

handling. We have to make sure that the change to OUTPUT_DEBUG_STRING_EVENT or RIP_EVENT never

happens.

ARTEAM EZINE ISSUE III REV.1

The strange case of DBG_PRINTEXCEPTION_C & DBG_RIPEXCEPTION by MOID 65

The disassembly of the relevant code (in ntdll!DbgUiConvertStateChangeStructure) is this:

 lea esi, [eax+0Ch]

 mov ecx, [esi]

 cmp ecx, 40010006h ;<-- is it DBG_PRINTEXCEPTION_C?

 jnz short loc_7C950969

 mov [ebx], edi

 mov ecx, [eax+24h]

 mov [ebx+0Ch], ecx

 mov ax, [eax+20h]

 and word ptr [ebx+10h], 0

 mov [ebx+12h], ax

 jmp loc_7C950A28

loc_7C950969:

 cmp ecx, 40010007h ;<-- is it DBG_RIPEXCEPTION?

 jnz short loc_7C950985

 mov dword ptr [ebx], 9

 mov ecx, [eax+24h]

 mov [ebx+10h], ecx

 mov eax, [eax+20h]

 jmp loc_7C950A25

 lea esi, [eax+0Ch]

 mov ecx, [esi]

 cmp ecx, 40010006h ;<-- is it DBG_PRINTEXCEPTION_C?

 jnz short loc_7C950969

 mov [ebx], edi

 mov ecx, [eax+24h]

 mov [ebx+0Ch], ecx

 mov ax, [eax+20h]

 and word ptr [ebx+10h], 0

 mov [ebx+12h], ax

 jmp loc_7C950A28

loc_7C950969:

 cmp ecx, 40010007h ;<-- is it DBG_RIPEXCEPTION?

ARTEAM EZINE ISSUE III REV.1

The strange case of DBG_PRINTEXCEPTION_C & DBG_RIPEXCEPTION by MOID 66

 jnz short loc_7C950985

 mov dword ptr [ebx], 9

 mov ecx, [eax+24h]

 mov [ebx+10h], ecx

 mov eax, [eax+20h]

 jmp loc_7C950A25

By patching the red jnz's to jmp, the change will never happen and they will be treated like normal exceptions.

Make sure that the change is in the memory of the debugger, not the debuggee!

8.5 REFERENCES

Post by dsei - http://www.rootkit.com/board.php?thread=3360&did=edge284&disp=3360

Windows Native Debugging Internals - http://www.openrce.org/articles/full_view/25

http://www.rootkit.com/board.php?thread=3360&did=edge284&disp=3360
http://www.openrce.org/articles/full_view/25

ARTEAM EZINE ISSUE III REV.1

Cracking for Fun by arjuns 67

9 CRACKING FOR FUN BY ARJUNS

I am going to discuss upon how cracking can be a fun. The topic I’ve chosen is how one can create multiple

instances of Yahoo Messenger and Windows Live Messenger as we know one can’t create multiple instances of

them by default.

9.1 SOME THEORIES

Let’s discuss upon how program knows if there is already a running instance of it. There may be various tricks

to check it but the following Win32 AIPs are very helpful to achieve the same goal.

9.1.1 FINDING WINDOW

1. FindWindow (Exported by user32.dll)

The FindWindow function retrieves the handle to the top-level window whose class name and window name

match the specified strings. This function does not search child windows.

HWND FindWindow (

 LPCTSTR lpClassName, // pointer to class name

 LPCTSTR lpWindowName // pointer to window name

);

9.1.2 MUTEXES:

2. CreateMutex / OpenMutex (Exported by kernel32.dll):

A mutex (from mutually exclusive) is an object that can only be acquired by one thread at any given moment.

Any threads that attempt to acquire a mutex while it is already owned by another thread will enter a wait state

until the original thread releases the mutex or until it terminates. If more than one thread is waiting, they will

each receive ownership of the mutex in the original order in which they requested it.

ARTEAM EZINE ISSUE III REV.1

Cracking for Fun by arjuns 68

9.1.3 SEMAPHORES

3. CreateSemaphore/ OpenSemaphore (Exported by kernel32.dll)

A semaphore is like a mutex with a user-defined counter that defines how many simultaneous owners are

allowed on it. Once that maximum number is exceeded, a thread that requests ownership of the semaphore

will enter a wait state until one of the threads release the semaphore.

9.1.4 EVENTS

4. CreateEvent / OpenEvent (Exported by kernel32.dll)

The event object is a kernel object that stays nonsignaled until a condition is met. The programmer has the

control over setting the event object to a signaled or a nonsignaled state, unlike a mutex or semaphore where

the operating system governs the signaled and nonsignaled state of the object.

Notes:

All of the synchronization objects described above are managed by the kernel’s object manager and

implemented in kernel mode, which means that the system must switch into the kernel for any operation that

needs to be performed on them.

9.2 DIVING INTO THE SCENE

9.2.1 YAHOO MESSENGER

Let’s begin our real job, first we go for Yahoo Messenger, version I’m using is 8.1.0.249

Open the target in Olly.

You can try putting breaking point on every APIs mentioned above. The only important Breakpoint is of at

4a294B.

As you can clearly see that there is a comparison being made at 4A2951, where ESI holds 0 and EAX being

window handle. This is just to check that if there is already a window running of the same class

“YahooBuddyMain”. And if true it closes the newer instance by closing window handle at 4A297E.

ARTEAM EZINE ISSUE III REV.1

Cracking for Fun by arjuns 69

So we just need to patch JNZ 4A2993 at 4A2959 to NOP so that it never jumps off there.

Now,

At 4A2964 we have a call to CreateSemaphoreA, and after execution it returns not null, if there is already

Yahoo Messenger running and null if no instance of it running in EAX , in case of not null we assume that

there is already Semaphore object exists of the name “messengerexists_sem”. Further we have a call to

GetLastError at 4A2970 and a comparison is being made with the last error code to B7

(ERROR_ALREADY_EXISTS), if comparison is true newer window never gets executed.

So patch 4a297b: JNZ 4a298b too jmp 4a298b

Copy all modification and save, you are done. Enjoy as many instances as you want of yahooMessenger

9.2.2 WINDOWS LIVE MESSENGER 8.1

Easy, Windows Live Messenger doesn’t use FindWindow method to check if there is already one instance of it

running nor it checks for Semaphore object but it uses an event object to know if there is one running already.

We can clearly see that one Event object named “MSNMSGR” is being created at 543cd4

When there is already one, we’ll have not null value in EAX which is of course an event handle to an earlier

event object.

ARTEAM EZINE ISSUE III REV.1

Cracking for Fun by arjuns 70

Further we have

Call at 543ce8 gets last error and if that error code is B7 (ERROR_ALREADY_EXISTS)

Newer instance gets destroyed. We just need to patch JE 548828 to nop so it never jumps off to destroy the

newer instance...

Save all modification, now you have a working multi messenger.

ARTEAM EZINE ISSUE III REV.1

Writing a self-keygenerator loader with Abel by M1sCh13F 71

10 WRITING A SELF-KEYGENERATOR LOADER WITH ABEL BY M1SCH13F

10.1 INTRODUCTION

Self keygenning is a method of patching an app, or in our case using a loader, to give the user a valid serial.

This is a simplified way to keygen something. It can be used on very difficult to follow registration schemes or

for anyone who just finds keygenning to be difficult. While this method might not be as 1337 as keygenning an

app it has its place. Some assembly is required ;-). As always the more ASM you know, the better. The Program

we will be examining today is, MP3 AVI MPEG WMV RM to Audio CD Burner, by Ether… Could they have made

the name a little longer? Although I would not consider this a difficult program to serial fish, or to self keygen,

it is not intended for n00bs either. This tutorial is also not intended to supplement lena151’s tutorials, wh ich I

consider to be the definitive guide to cracking; hopefully this will complement and reinforce what she had in

her tuts. If you haven’t seen them I highly recommend doing so. They can be found at http://tuts4you.com. On

a final note, this is my first tutorial. I hope you enjoy. Enough BS let’s get down to business… Happy Cracking.

Tools Needed:

 PEiD, http://peid.has.it/

 OllyDbg, http://www.ollydbg.de/

 ABEL, http://www.tuts4you.com/download.php?view.385

Not Required, but recommended tools:

 MASM, http://www.masm32.com/masmdl.htm

 WinASM, http://www.winasm.net/index.php?ind=downloads

Further Reading:

 Lena151 Tutorials:

 17. Insights and practice in basic (self)keygenning

 24. Patching at runtime using loaders

 Goppit’s Win32 Assembler Coding for Crackers

http://tuts4you.com/
http://peid.has.it/
http://www.ollydbg.de/
http://www.tuts4you.com/download.php?view.385
http://www.masm32.com/masmdl.htm
http://www.winasm.net/index.php?ind=downloads

ARTEAM EZINE ISSUE III REV.1

Writing a self-keygenerator loader with Abel by M1sCh13F 72

10.2 EXAMINING THE APPLICATION

As with any other potential target we will start by looking at our exe in PEiD. BTW Thanks to SnD For the nice

visual on the version I am using :)

Alright… Visual C++ 6. Usually easy to follow. Further examination, using kanal, reveals no known crypto

algorithms used.

After loading the program in Olly we will land at EP press F9 to start and open the registration window. Type in

your name as well as a bogus serial number. Here is what you will see :(. Don’t worry about the Invalid user

name though… we’ll fix that ;)

ARTEAM EZINE ISSUE III REV.1

Writing a self-keygenerator loader with Abel by M1sCh13F 73

10.2.1 SERIAL FISHING THE TARGET

Alright, so right click the main window and go to “Search for” and then “All referenced Text Strings” As I’m

sure you already know by now, unless you are a total n00b. Hit the ‘home’ key on your keyboard to start at the

top of the list, Right click and search for “invalid user” or something like that. Make sure it’s not case sensitive

either in case you DeCidEd tO tYpe LikE ThIs.

We find the text string at address 004066DC. Look around and examine the code a bit and study what is going

on and how we will land there. You’ll see that there is a JNZ that jumps past a return into the function to call

the bad boy. Let’s not get ahead of ourselves, BP the beginning of the registration scheme 00406570.

Step, F8, through the code. We don’t see anything too interesting beginning to happen until 004065CD. This is

where the serial is calculated. So, if you are more interested in patching, or keygenning this may be of interest,

but today we will continue on. Step, F8, once more and we see our valid serial on the stack, below our name.

Follow it in the dump so we can see what we might be playing with later. Scroll around a little bit and you’ll see

your name and your bogus serial not far away. Take notice that the correct serial is 1 Q-Word Long, or 2 D-

Words long. No matter how long your name is on this app the serial is always the same length.

If you look a little bit further in the code, you’ll see that if you input a correct serial, it is written to a file,

option.ini, so if we can replace our bogus serial with the correct one in the dump we should have a fully

functioning program that wasn’t patched right?

ARTEAM EZINE ISSUE III REV.1

Writing a self-keygenerator loader with Abel by M1sCh13F 74

10.2.2 FINDING WHERE TO PATCH

Alright… now that we have our correct serial, let’s see what happens when registering. Copy and paste the

correct serial into the registration box. Step, F8, note the values of the registers particularly EAX when you get

to the jump to bad boy. Continue past the jump to the bad boy and we will see that there are two loops

following it. The first one reads your name from the dump, the second reads the serial. This is where the

program figures out what data goes into the configuration file.

The Code after this is pretty much useless to us. Now let’s figure out where to patch the program. The ideal

spot would to follow the jump to the bad boy since that code is useless for us anyhow and we don’t want to

dig too deep :)

As you can see we have 25(HEX) bytes to play with here, which should suffice for what we need to do.

You may be asking yourself why we don’t patch it at the source, where the serial is originally written onto the

dump. Well further examination reveals that it seems to be happening in a system DLL, msvcrt. And to be

honest with you I don’t feel like messing around in there. In other programs it may be a very viable option

though, so don’t limit yourself to the method we are using today.

10.2.3 PATCHING THE APP

Now comes the fun part, patching the app to do our bidding >:)

We have to think of what exactly we want to do.

1. Move DWORD at memory address 0013AC20 to DWORD 0013ABE0

2. Move DWORD at memory address 0012AC24 to DWORD 0013ABE4

3. You’ll notice the bogus serial has an empty byte after it. Make sure to patch the byte at 0013ABE8 to

be empty otherwise you’ll end up with funky data in the configuration file unless the user put an 8

character long serial.

ARTEAM EZINE ISSUE III REV.1

Writing a self-keygenerator loader with Abel by M1sCh13F 75

4. Clear EAX to be Zero just like it was when passing the jump to the bad boy when registration was

successful. This is important because the loops after the jump to the bad boy use EAX as a counter.

5. Jump back to where we would be right after the jump to the bad boy, 004065F6.

You cannot just assemble code that says MOV DWORD PTR DS:[69696969], DWORD PTR DS:[00311311].

You will have to move the d word’s contents to a register. Since we already are going to XOR EAX I am going to

move use that.

Here is what the patch will look like in olly

MOV EAX,DWORD PTR DS:[0013AC20]

MOV DWORD PTR DS:[0013ABE0],EAX

MOV EAX,DWORD PTR DS:[0013AC24]

MOV DWORD PTR DS:[0013ABE4],EAX

MOV BYTE PTR DS:[0013ABE8],00

XOR EAX,EAX

JMP 004065F6

Which correspond to this byte sequence:

A1 20 AC 13 00 A3 E0 AB 13 00 A1 24 AC 13 00 A3 E4 AB 13 00 C6 05 E8 AB 13 00 00 33

C0 E9 FF FE FF FF 90 90 90

If you don’t know how to find that right click the code and “follow in dump”

Hopefully you are following along so far.

10.2.4 TESTING

At this point it is, as always, advisable to test your patch. Right Click, Copy to executable, all modifications.

Would also be a good idea to save your work thus far. Let’s keep our breakpoints intact and step through the

code to make sure it is doing exactly what we want it to. Unless you screwed it up you should see the contents

of 0013AC20 move to EAX and then to 0012ABE0 and so on.

ARTEAM EZINE ISSUE III REV.1

Writing a self-keygenerator loader with Abel by M1sCh13F 76

Here’s what the dump should look like after our patch has run its course.

Also notice what happens on lines 004066B9 and 004066B4 as we pass through the loops after the jump to the

bad boy.

Name and correct serial :)

Job well done. Now all that is left to do is make it distributable. We have several ways of doing this. We can

make an offset patch, make a search and replace patch, which could possibly work on other versions, or we

can make a loader that the user will only have to run once and they don’t have ‘cracked’ software on their

machine. I like the third method myself, it’s 1337er which is always a plus… right? So let’s move on.

10.3 CREATING A LOADER IN ABEL

Alright this is the easy way at going about making a loader. In case you have never made a loader, don’t worry

I’ll be showing you. Let’s fire up ABEL. First thing let’s change the timeout, which is the time the loader waits

for the program to load before patching. Sometimes when you can’t find a suitable memory address to follow

to make a loader in dUP this is the best alternative.

I changed the timeout to 5 seconds because 15 is far longer than we would require. I also disable Auto

learning. Auto learning searches for byte sequences, this works well in polymorphic code or a packed

executable where the address of the patch might change.

ARTEAM EZINE ISSUE III REV.1

Writing a self-keygenerator loader with Abel by M1sCh13F 77

Next I put the target program’s file name. I just right clicked the target file and pressed rename and copied the

name and added .exe at the end when I pasted it into ABEL. The Loader name is your call. Next comes the

tricky part. The patch data in ABEL can be kind of annoying because you can’t just copy and paste an entire

byte sequence like you can in dUP. Despite its downfall it is pretty straight forward and easy.

First you put the address where you want to patch. You don’t need to use raw offset, just type what you see in

Olly, as you can see in my screenshot. For the “apply this patch” section you can pick any of the options they

will all work for our example. For the final touch I added the custom icon by loading the icon used by the

program we are patching. That is up to you though as well.

Alright well enough around lets generate this loader. Press OK out of the patch data window and then press

generate!

ARTEAM EZINE ISSUE III REV.1

Writing a self-keygenerator loader with Abel by M1sCh13F 78

10.3.1 TESTING LOADER

Let’s first delete the data from “option.ini” that contains our user name and registration code. So you should

be looking at something like this…

Alright now it’s time to test our loader! Click ‘Register’ and let’s try it out.

Alright, now let’s take a look at option.ini again and make sure our patch did what it was supposed to.

ARTEAM EZINE ISSUE III REV.1

Writing a self-keygenerator loader with Abel by M1sCh13F 79

As you can see, we have our name and our correct 8 character long serial.

If you want to double check, restart the program without the loader and look in the about box.

ARTEAM EZINE ISSUE III REV.1

ARTeam eZine #4 Call for Papers 80

ARTEAM EZINE #4 CALL FOR PAPERS

ARTeam members are asking for your article submissions on subjects

related to Reverse-Engineering.

We wanted to provide the community with somewhere to distribute

interesting, sometimes random, reversing information. Not everyone likes

to write tutorials, and not everyone feels that the information they have is

enough to constitute a publication of any sort. I’m sure all of us have hit

upon something interesting while coding/reversing and have wanted to

share it but didn’t know exactly how. Or if you have cracked some

interesting protection but didn’t feel like writing a whole step by step

tutorial, you can share the basic steps and theory here. If you have an idea

for an article, or just something fascinating you want to share, let us know.

Examples of articles are a new way to detect a debugger, or a new way to defeat debugger detection, or how

to defeat an interesting crackme..

The eZine is more about sharing knowledge, as opposed to teaching. So the articles can be more generic in

nature. You don’t have to walk a user through step by step. Instead you can share information from simple

theory all the way to “sources included”

What we are looking for in an article submission:

1. Clear thought out article. We are asking you to take pride in what you submit.

2. It doesn’t have to be very long. A few paragraphs is fine, but it needs to make sense.

3. Any format is fine, but to save our time possibly send them in WinWord Office or text format.

4. If you include pictures please center them in the article. If possible please add a number and label

below each image.

5. If you use references please add them as footnotes where used.

6. If you include code snippets inside a document other than .txt please use a monospace font to allow

for better formatting and possibly use a syntax colorizer

7. Anonymous articles are fine. But you must have written it. No plagiarism!

8. Any other questions you may have feel free to ask

We are accepting articles from anyone wanting to contribute. That means you.

We want to make the eZine more of a community project than a team release. If your article is not used, it’s

not because we don’t like it. It may just need some work. We will work with you to help develop your article if

it needs it.

Questions or Comments please visit http://forum.accessroot.com

http://forum.accessroot.com/

	Forewords
	Disclaimer
	Supplements
	Verification

	Code Injection – 1ClickDVDCopyPro by CondZero
	Introduction
	Abstract
	Target
	Preparation
	Checking out the target
	Analyzing the target
	Injecting our code
	Conclusions

	MUP AnyDVD v6.1.3.6 by CondZero
	Introduction
	MUP AnyDVD v6.1.3.6
	Target
	Setup
	Checking out the target and finding the OEP
	Dumping the target
	Fixing the IAT
	Analyzing & Patching the target
	Time Limitation - Expiration
	Nag Screen
	General Settings & Registration Information
	Registered Name option (cont’d):
	HD DVD & BLU-RAY Settings
	HD DVD & BLU-RAY Functionality
	Gotcha’s

	Conclusions

	Patching Prima eGuides (single byte patching) by SSlEvIN
	Introduction
	Patching Prima eGuides
	Target
	Tools

	Inspecting the target
	Finding patch(es)
	Piece of cake
	Aesthetic patch

	Conclusions

	ExamDiff 4.xxx reversing the protection schema by Shub-Nigurrath
	Introduction
	Approaching the enemy
	Reversing the registration schema
	Studying the jump 1
	Studying the Jump 2
	Handling of function sub_456BAE where serials version are checked

	Testing whole thing & Conclusions

	Reversing Business Translator 9.00 by kaira
	Introduction
	Approaching the Enemy
	Body
	Searching For A Serial

	Conclusion

	ExeCryptor for dummies or How to unpack ExeCryptor 2.4 without having a clue what you are doing by Haggar
	Introduction
	Content
	[1] Requirements for this guide
	[2] Preparations before loading target in Olly
	[3] Loading target in Olly
	[4] Using script to kill anti-debug tricks
	[5] Finding OEP
	[6] Using script to decrypt imports
	[7] Dumping to hard disc
	[9] Reference material
	ScriptS

	OCR Tools Walkthrough of Key Check routine by Anhs!rk
	Introduction
	Tool Required
	Walkthrough

	The strange case of DBG_PRINTEXCEPTION_C & DBG_RIPEXCEPTION by MOID
	Introduction
	Trick description
	The cause
	The solution
	References

	Cracking for Fun by arjuns
	Some Theories
	Finding Window
	Mutexes:
	Semaphores
	Events

	Diving into the scene
	Yahoo Messenger
	Windows Live Messenger 8.1

	Writing a self-keygenerator loader with Abel by M1sCh13F
	Introduction
	Examining the Application
	Serial Fishing The Target
	Finding Where To Patch
	Patching The App
	Testing

	Creating A Loader In ABEL
	Testing Loader

	ARTeam eZine #4 Call for Papers

